Softmax的名字是怎么来的?

by Jiyang Wang (e-mail: jiyang_wang@yahoo.com)

When I was learning multiclass classifiers such as SVM and Neural Networks, "Softmax" came across to my mind with some mystery in its name. I was wondering why it was named so, and whether there was "Hardmax" function being its brother or even ancestor. I checked it out on Wikipedia but failed to find any useful information there. There was the same question about Softmax's name on Quora and one of the answers, to my memory, revealed some part of the mystery. However, I cannot find that Quora link anymore.


Like most people, I continue to use it natually in my work without thinking about its origin. Engineers and researchers are mostly pragmatic, aren't they?


But recently when I was preparing for a few job interviews and Softmax drew my attention again (because I was concerned that an interviewer would ask me to explain Softmax function or Softmax classifier in details). I decided to figure out why it's got this funny name and whether it really stems from another related function nick-named "Hardmax" (or not --- no chance to find it on Wikipedia, anyway).

Hardmax

Before elaborating Softmax, I just jump to the conclusion that there is "Hardmax" function, which is usually called Hinge Loss function used in linear classifiers such as SVM:

image

where sj and si are classification scores of the j-th and i-th element of the output vector of the model. And Li is the loss for classifying the input as the i-th class.


Stanford CS class CS231n: Convolutional Neural Networks for Visual Recognition has a very good explanation of the above loss function. Please check it out here (http://cs231n.github.io/linearclassify/#softmax).


And here is an example from it:

image

Wikipedia has Hinge Loss (https://en.wikipedia.org/wiki/Hinge_loss) as well.

Basically, hinge loss has a threshold Δ below which the loss of an element of output vector (score vector) is perceived as zero. The threshold Δ, which functions as a margin between the classification boundary (a.k.a. decision boundary) and the samples nearest to the boundary, is applied to sj for all j ≠ i so that the loss of sj is added up to the overall loss of Li only when sj has a difference from si smaller than the threshold.


Thus the hinge loss function has the form of max function max(0, x) and it is "hard" by its nature. We'll see what this means later on when we draw the graph of max function. Now here is an example of how hinge loss is calculated (from Stanford CS231n), in which i = 0, i.e., the ground truth label of the input pitcure is "cat", and Δ = 10:

blob.png

Then we want to see what each sj contributes to the hinge loss of si, with sj as variate and si fixed, by drawing a graph of it. I simplify the graph by using only integers for sj while fixing si to 0 and Δ = 0.

image

image

image


No doubt why max function is also called "hinge" function, because its shape looks like a hinge. It can be called "hardmax" because the loss introduced by sj to Li is "harshly" zeroed out as long as its negative difference from si is larger than a threshold regardless of its own value. Or, from another perspective, there is a point (at sj = 0 in the graph) where the function is not differentiable (which is 'hard', i.e., not smooth, as compared to 'soft').

Interpretation of Scores

Let's put hinge/hardmax function aside for a while and talk about Softmax function. Again, Stanford CS231n provides very clear description of why Softmax function is applied to classification scores, quoted below:


Unlike the SVM which treats the outputs f (xi ,W) as (uncalibrated and possibly difficult to interpret) scores for each class, the Softmax classifier gives a slightly more intuitive output (normalized class probabilities) and also has a probabilistic interpretation that we will describe shortly. In the Softmax classifier, the function mapping

blob.png

stays unchanged, but we now interpret these scores as the unnormalized log probabilities for each class and replace the hinge loss with a cross-entropy loss that has the form:

blob.png

The function

blob.png

where

blob.png

is called Softmax function: It takes a vector of arbitrary real-valued scores (in z) and squashes it to a vector of values between zero and one that sum to one.

Cross-Entropy Loss

Attention should be paid to the final form of Li just above, in which it is not obvious where cross-entropy loss is applied. Let's delve into more details.

As said above, score is interpreted as unnormalized log probability for class i, so we have:

blob.png

Or

blob.png

Now we normalize this probability:

blob.png

This is Softmax function. Then we calculate cross-entropy, quote from Stanford CS231n:


The cross-entropy between a “true” distribution p and an estimated distribution q is defined as:

blob.png

The Softmax classifier is hence minimizing the cross-entropy between the estimated class probabilities (q(si) =  blob.pngas seen above) and the “true” distribution, which in this interpretation is the distribution where all probability mass is on the correct class (i.e. p = [0, …, 1, …, 0] contains a single 1 at the i-th position).


In a nutshell, cross-entropy measures the difference between two vectors. In our case, we want to compare the ground-truth label that has been one-hot encoded to p = [0, . . . , 1, . . . , 0] with the output vector of the model q(si). As vector p has 1 at the i-th position and 0's at all the other positions, the result of cross-entropy between vector p and vector q keeps only the i-th element of vector q.

blob.png

This is exactly Li. It is the negative log of Softmax function.

Softmax Function

Let's re-write cross-entropy loss over Softmax function as below so that it makes it clear that the loss function is in fact a function of score difference (which is consistent with hinge loss):

blob.png

K is the number of classes.


Unlike in hinge loss, though, every element of the output score vector in cross-entropy loss over Softmax function has some influence on the final loss regardless of its score value sk. Let's evaluate the contribution of one of the element's score sk as variate with si fixed so that we can compare the result with the contribution of sk in hinge loss:

blob.png

Now let's draw the graph of f(sk). As we are only interested in the shape of f(sk) , we can fix si to 0 as we did when drawing the graph of max function. For comparison, I draw the max function together with Softmax function.

image

image

image


Can you tell why Softmax is a 'softened' version of max  function? I'm sure you can now.