曾经,机器人的出现改变了整个制造业经济领域。如今,人工智能和自动化以同样的方式颠覆着信息工作,人类开始逐渐将认知劳动交付给计算机。

  例如,在新闻业中,数据挖掘系统会提醒记者编辑们注意潜在的新闻选题,而新闻机构则为观众提供了获取信息的新方法。自动报道机制如今已可以覆盖财经、体育等品类的新闻。

  当这些智能技术渗透到各行各业中时,人们通常会好奇传统工种和劳动力将受到怎样的冲击。本期全媒派(ID:quanmeipai)带来独家编译,看看在人工智能加入的新闻业中,做新闻的会是谁?他,或者说它们,又会怎么做新闻?

  强化而非替代

  西北大学助理教授及计算机新闻实验室总监Nicholas Diakopoulos在其最新著作《自动新世界:算法如何改写媒体》中通过一系列论证表明,即使在人工智能主导的未来,仍然会存在很多人类新闻工作者。但是,这些人的工作,角色以及工作内容都会有所改变。人力将与算法结合,以释放人工智能的能力,同时适应其局限性。

  据估计,以目前的人工智能技术水平,记者的工作中只有约15%可以实现自动化,编辑则只有区区9%。

  在好莱坞大片以外的真实世界中,人类仍然在几个新闻业关键领域对人工智能保持优势,包括复杂沟通,专业思考,适应性,以及创造力。

  报道,倾听,回应和推拉,平衡信源,最后将这些环节打通,用创造力输出内容,记者工作的每一步都不可或缺,而人工智能甚至无法完成其中任何一个。

  但是,人工智能可以强化人类的工作成果,以帮助提高工作效率或质量。它能为深化新闻报道带来新机,让报道变得更加个性化。

  新闻编辑部的工作总是在适应新技术的浪潮,摄影、电话、电脑,甚至是小小的复印机。记者也必将适应与人工智能的协同作业。作为一种技术,人工智能已经并将持续改变新闻工作,但它非但不会取代一个训练有素的新闻人,反而会让他变得更强。

  新工种的出现

  Nicholas Diakopoulos发现,人工智能技术似乎正在为新闻界创造新的工作类型。

  以美联社为例,该社在2017年推出了计算机视觉人工智能技术,用以标记每天处理的数千张新闻照片。系统可以在标注中指明这张照片包含了什么内容或者哪些人,摄影风格如何,有无暴力画面等信息。

  该系统将图片编辑从大量的标注工作中解放出来,从而拥有更多的时间来思考他们应该发布什么。

  但无论在研发端还是编辑端,对这一系统的开发都需要大量的工作:编辑必须弄清要标记的内容以及算法对这一任务的匹配度,然后开发新的测试数据集来评估效果。完成所有操作后,他们仍然需要监控系统,手动批准每张照片的建议标签来确保高准确度。

  负责该项目的美联社高管Stuart Myles告诉Nicholas Diakopoulos,这项工作耗时数年,十多名编辑、技术和行政人员参与其中。大约三分之一的工作涉及新闻专业知识以及一些特别难以实现自动化的判准。虽然在将来人力监督有望削减,但随着技术系统的发展和扩大,编辑的工作仍将不可或缺。

  半自动化内容制作

  在英国,RADAR项目每月通过半自动化模式输出约8000篇本地化新闻。该项目由6名记者运营,他们找到按地理区域划分的政府数据集,筛选出有趣且有新闻价值的选题,然后将这些想法发展为数据驱动的报道模板。

  模板通过编码,将每条文本和数据归属的地理位置一一对应。例如,一篇报道可以讨论英国的人口老龄化问题,并通过布里斯托不同的本地化统计数据,向卢顿市的读者展示他们所属社群的变迁情况。这些报道会由通讯社发送到当地媒体,并由他们决定是否发布和如何发布。

  在这一方法中,记者和自动化高效结合:记者利用他们的专业知识和沟通技巧,为数据预设一些可能的“故事线”。他们也会与不同信源讨论来获取某个问题的全国普适视角,从而编写报道模板。在这个过程中,自动化充当了新闻生产小助手的角色,使同一文本能够适应不同的当地环境。

  RADAR记者使用一种名为Arria Studio的工具,它可以让内容生产者一睹自动化内容在实践中呈现的样子——它看起来就像一个复杂版的Word。