人脸识别系统需具备活体检测功能,以判断提交的人脸特征是否来自有生命的真实个体。

人脸活体检测的基本原理

人脸门禁的基本功能是人脸验证(Face Verification),而活体检测属于人脸防伪技术(Face Anti-Spoofing)。人脸验证和人脸防伪,两种技术各有侧重。

人脸验证:人脸验证是判断两个人脸图是否为同一个人的算法,即通过人脸比对获得两个人脸特征的相似度,然后与预设的阈值比较,相似度大于阈值,则为同一人,反之则不同。这是近年来一个非常热门的研究方向,也产生了一大批算法模型和损失函数。

人脸防伪:用户刷脸的时候,算法要甄别这张脸是不是真人活体脸,而对于照片、视频和假体面具等攻击行为,算法应该予以拒绝。

1、照片攻击与活体检测

照片是最简单的攻击方式,利用社交媒体,例如微信朋友圈或微博,可以轻而易举地获得相关人员的照片。但照片毕竟是静态的,不能做出眨眼、张嘴、转头等动作。利用这个特点,活体检测系统可以下达几个动作指令,通过对被检测人员的动作符合性判断,就可以实现交互式的动作活体检测。

为了对付动作活体检测,有攻击者改进照片伪装,按真人尺寸打印另外一个人的照片,在照片的眼睛和嘴巴部位镂空,贴在脸上,露出眼睛和嘴巴。按照活体检测系统的指令,执行眨眼、张嘴、转头等动作。但是,这种伪造的效果与真实人脸实际的运动情况相去甚远,很容易被检测算法识别。

人脸门禁活体检测的常用方法

动作活体检测的方式具有很高的安全性,但要求用户配合做指定动作,因此实际用户体验较差。为了实现无感通行的效果,人脸门禁很少采用响应指令的动作活体检测,通常基于图像和光学效果的差别实施活体甄别

普通摄像头活体检测、红外摄像头活体检测、3D摄像头活体检测

活体检测是人脸门禁系统非思丸的必备技术,准确率可达99%以上,广受大众好评。在身份认证和无感通行日益普及的今天,活体检测为大众的工作和生活提供更多的安全保障和生活便利。