研究:CIO 对 AI 的实验和投资仍持谨慎态度

作者: 张苏月 2019-04-29 11:51:25

在用机器学习进行实验和取得结果时,有产者和无产者之间的差距越来越大。上周于纽约举办的奥莱利人工智能大会(O’reilly AI Conference),可以让我们深入了解企业采用人工智能的***结果。

毫无疑问,已采用者显然是科技公司。本次大会上 Facebook、Twitter、Salesforce 和其他公司分享了他们正在用机器学习解决的问题的重要细节,以及他们标准化和扩展机器学习实践的努力。

研究:CIO 对 AI 的实验和投资仍持谨慎态度

技术供应商也展示了他们***的能力和企业产品,其中英特尔AI、微软Azure和IBM Watson处于领先地位。在去年的报告中曾提到,深度学习更容易被主流企业所接受,在今年的会议上,大大小的供应商都提供了数据科学平台、dataops框架和数据管理工具,帮助企业开始和成熟地进行机器学习实验。

人工智能投资:很多企业都落后了

调研结果显示,在机器学习和人工智能方面,许多CIO似乎都在观望。Gartner最近的一项调查显示,只有37%的受访者表示他们在投资人工智能。Ben Lorica 和 Paco Nathan 在《企业对人工智能的采用情况调查》(AI Adoption In the Enterprise survey)中分享了他们自己的发现,即许多企业在采用人工智能方面仍然落后。

调查结果显示,人工智能以科技金融服务、医疗保健和教育为主导,占据了调研结果的58%。所有其他行业,包括电信、媒体和娱乐、政府、制造业和零售业,在调查中都低于4%。

即使在***行业,也只有一小部分受访者表示拥有成熟的实践经验。科技行业的这一比例***,为36%,超过50%的***行业受访者表示,他们正处于评估阶段。

CIO 们要克服的几个AI障碍

调查指出,在机器学习中进行实验存在许多困难,这可能会让CIO在将其列为研究和开发的首要任务之前稍作停顿。

投资人工智能之前,企业需要满足几个先决条件。23% 的受访者表示,他们的公司文化还没有认识到人工智能的必要性,19% 的受访者缺乏数据或存在数据质量问题。

据报道,50% 的人工智能项目处于研究和开发阶段,随后是客户服务、IT 或操作用例。对于保守的 CIO 来说,在推动客户体验或运营改进方面,投资实验性人工智能可能是第二或第三种选择,而不是其他更成熟的策略。

人工智能需要雇佣一个多学科的团队,由机器学习建模师、数据科学家、业务分析师、数据工程师和基础设施专家组成,受访者报告所有这些技能都存在技能短缺。

存在明显的技术风险,因为工具之间没有明显的赢家和输家。许多人工智能从业者正在使用多种工具,而 TensorFlow、scikit-learn、Keras 和 PyTorch 仍然是前四名,调查受访者列出了他们还在使用的其他 10 种工具。

除了选择技术,人工智能还有一整套全新的实践,这些实践需要通过模型可视化、自动化培训和模型监控来不断成熟,而模型可视化、自动化培训和模型监控在受访者中排名前三。

人工智能仍有许多业务风险,但其缓解策略并非微不足道。所处的***风险包括来自模型的意外结果和预测、模型透明性、偏差和伦理、模型退化、隐私、安全性、可靠性和安全漏洞。

为什么 CIO 不应该推迟 AI 实验

尽管存在所有这些障碍,企业***信息官们仍在冒着巨大的风险,因为他们没有涉足机器学习和人工智能领域。人工智能不同于web 1.0、移动、社交和云计算,在这些领域,落后者可能会因为姗姗来而受到惩罚,但可以通过投资于正确的技术平台、采用***实践和与熟练的服务公司合作来迎头赶上。

问题是,投资人工智能有三个关键的先决条件,需要***信息官的领导。组织需要一个定义好的数据策略,使用新技术执行的能力,以及变更管理和驱动文化变更的组织能力。这些都是数字原生企业的基本能力,对于许多投资于数字转型的企业来说,这些能力仍在改进中。

接受数字化转型的 CIO 应该在这些程序中添加人工智能实验。它是向数据、技术和组织变更活动交付业务利益的方法之一,所有 CIO 都应该已经在这些活动中进行了投资。通过将人工智能和机器学习添加到范围中,CIO可以开始更好地了解在其行业中应用人工智能的潜在业务利益、竞争威胁和操作风险。如果没有这种研究和开发,组织学习就会滞后,CIO 们可能会发现他们的能力与早期投资的竞争对手之间的鸿沟越来越大。

如何驱动人工智能实验

CIO有义务确保他们的组织不会远远落后于行业对机器学习和人工智能能力的采用。这并不一定意味着要立即对新技术和技能进行重大投资。相反,CIO可以通过承担这些职责开始解决一些先决条件:

  • 投资于组织学习,让商业和技术***更了解跨行业的人工智能正在发生什么。这意味着要超越那些大肆宣传和营销的科技公司,因为它们在人工智能的好处和能力方面显然处于领先地位。***信息官们应该考虑派商业***参加人工智能会议,并让受过机器学习技术和数据技能培训的高素质人才参加。
  • CIO 应该组织领导蓝天思维,并赞助机器学习证明概念,围绕机器学习可以提供最重要的商业利益。正是通过这些聚会和测试,才能对最有希望的机会进行更多的调查和探索。
  • CIO 应该领导主动的数据治理工作。所有机器学习程序都需要大量定义良好的数据,但数据质量较低。它本身是一个程序,用于编目数据源、配置文件和清理数据、对数据资产的分析人员进行培训,并使数据基础设施可用于机器学习实验。

这些努力都构成了机器学习项目的低风险、低起点,但都为需要在客户体验、自动化、分析和技术能力方面竞争的越来越多的组织带来了额外的好处。

人工智能 机器学习 CIO
上一篇:程序员“福音”来了:AI辅助人类写代码,靠谱吗? 下一篇:惊喜还是惊吓?盘点机器学习算法的「高能」瞬间
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

机器学习变革物流运输和交通出行

云和机器学习的融合催生了自动驾驶技术尤其是人们出行方式的广泛创新,正在改变整个行业的游戏规则。根据普华永道(PWC)的数据,68%的物流运输企业负责人认为,未来5年,提供物流运输服务的核心技术的改变将颠覆整个行业。

AWS大中华区云服务产品管理总经理顾凡 ·  2天前
人工智能可以塑造活动产业的未来吗?

活动组织者可以为活动管理引入AI,以使他们的活动更加成功。现场活动是很好的营销方式,也是增强业务与客户关系的优秀方式。根据一项调查,84%的领导者认为活动是其业务成功的关键因素。技术的使用正在改变活动的计划和组织方式。

佚名 ·  2天前
提升城市气质守护宜居环境 AI打通治理闭环

人工智能被一些研究人员称为“21世纪的电力”,认为其几乎可以为万事万物提供动力。而在城市加速发展的当下,人工智能也渐渐成为了新型智慧城市建设的“推动者”和“守望者”。

今夕何夕 ·  2天前
12个场景应用,百余种算法,AI是如何攻占经济学的?

在虚拟世界中模拟现实经济状况,想法设计更好的制度只是AI和经济学结合方式之一。其实深度强化学习在面临风险参数和不确定性不断增加的现实经济问题时,也可以提供更好的性能和更高的精度。

蒋宝尚 ·  3天前
你在打王者农药,有人却用iPhone来训练神经网络

在 iOS 设备上也可以直接训练 LeNet 卷积神经网络,而且性能一点也不差,iPhone 和 iPad 也能化为实实在在的生产力。

佚名 ·  3天前
未来20年,全自动驾驶和互联汽车会出现吗?

在这篇博文中,重点介绍了汽车技术如何使交通更安全、更智能、更有趣。

Huibert Verhoeven ·  3天前
AI、机器学习和深度学习是 OEM 的主要市场

人工智能(AI)正在迅速改变全球行业参与者的经营方式。人工智能(AI)正在迅速改变全球行业参与者的经营方式。随着人工智能在商业和商业领域的广泛应用,我们看到了从更智能的产品到专注于聚焦客户服务的一切演变。

佚名 ·  3天前
和AI去码一样神奇?AI上色是黑科技还是逗你玩

在图片处理领域这块,AI 刷的存在感越来越多。早前笔者就介绍过 AI 无损放大图片、AI 去除马赛克、AI 自动给线稿上色之类的玩法,现在,又有人给笔者推荐了一个 AI 黑科技——黑白照片一键变彩色。

Aimo ·  3天前
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载