2019年中国智能制造的十大发展趋势!

作者: 工业电器网 2019-04-24 16:20:29

2018年,随着我国政府相关扶持政策的出台,加上制造业智能化进程的推进,我国智能制造产业现今呈现出高速发展的状态,预计2019年市场规模将会达 19000 亿元。

2019年中国智能制造的十大发展趋势!

智能制造是全球工业行业苏醒的至关点之一,在5G、人工智能、物联网等技术的快速发展下,智能制造迎来了冬天的第一缕阳光。

根据数据显示,2017年中国智能制造行业的市场规模为 15150 亿元,增长率为 22.6%,随着各大企业和机构对于技术的研究更加深入、产品更加创新,预计2019年市场规模将会 19000 亿元。

数据来源:前瞻产业研究院整理

随着智能制造领域政策的持续出台,中国制造业逐渐向智能制造方向转型,并开始大量应用云计算、大数据、机器人等相关技术。作为中国制造业的主要驱动力之一,利好政策的不断出台,行业将持续稳定增长,中国制造业中所起到的地位将会越来越重要。

从发展前景、技术融合、商业模式以及生产安全等方面来看2019年中国智能制造将迎十大发展趋势。

01

安全生产将成为重中之重

工业核心数据、关键技术专利、企业用户数据等数字化资产已成为企业核心资产。

作为生产的首要保证,安全性一直都是政府和员工最为关心的问题。

当智能制造融合了机器人、人工智能众多前沿科技后,人为能够及时控制的事故似乎变得更加简单,但是在设备增多的情况下,如何有效管理人机交互时的安全性是重点之一。

2019年中国智能制造的十大发展趋势!

另外,在工业物联网进入制造业后,工业物联网遭到数据攻击的事件常有发生,所以企业的设备、产品等数据的安全也显得尤为重要。

目前我国数据安全法规体系和监督机制尚不健全,一定程度上抑制了企业智能化升级步伐。

未来,提高数据全生命周期安全性,增加企业上云信任度和意愿,将成为中国企业智能化升级决策的重要依据。

02

智能制造行业将会近一步扩大

智能制造在汽车行业、3C电子领域的应用已经逐步加深,当各企业开始认识到智能制造是实现中国制造2025的重要方向后,数字化、网络化、智能化能够对企业的产值和效率持续优化,智能制造会进一步渗透石化、纺织、机械等行业。

03

通用性技术或将成为AI+的突破口

在定制化柔性制造、多场景生产的大力发展下,通用性技术并不能满足生产需求。对于AI赋能传统工业,就能够容易解决这些需求。

在大数据的积累下,企业能够利用AI实现专业场景的快速转变,真正做到制造向“智”造转型。

2019年中国智能制造的十大发展趋势!

04

数字双胞胎技术或将崛起

2018年,汽车行业较为萎靡,并没有像往年那样“金九银十”,客观来讲从买车到养车的成本很高。

数字孪生技术将作为企业数字化升级和智能工厂建设的第一选择,车企可以通过这些技术在研发过程中解决生产过程复杂、资源浪费等产生高成本的问题,以更低的成本做出数字化模型。

通过降低成本,汽车行业在明年的销量可期。同时,在3C领域引入数字双胞胎技术也可带动行业的发展。

预计到2020年,至少50%年收入超过10亿元的制造商将为其产品或资产启动至少一项数字孪生项目。

05

打造精准大数据闭环

近些年,工业大数据开始被企业所重视,利用大数据能够挖掘那些隐藏在背后的客户价值,帮助企业完成时限客户需求、生产系统、商业模式、决策模式的转变。大数据能够帮助企业从0做到1,然后再从1做到N,从N做到1(个性化)。

要实现这样的模式,就需要企业构建从构建从采集、分析、转化、反馈等环节的精准数据流闭环。

2019年中国智能制造的十大发展趋势!

06

更多互联网企业进军智能制造

互联网企业进军工业领域,即“互联网+智能制造”已取得初步成效。阿里云与西门子合作,宣布正式进军工业物联网,同时百度智慧工厂以及京东智慧供应链等都在打造自己的智能制造产业。

互联网企业具有长时间的数据积累和技术优势,在进军工业领域后,能够给传统制造企业带来更多的技术应用场景,加速企业智能制造的转型。

07

用户需求将引导企业转型

工业发展进程正在从企业产品牵引用户需求转变为用户需求引领企业生产,智能制造将会改变传统制造从生产环节降低成本增效,进而转向提供高附加值的衍生服务,从提供智能产品到智能服务实现附加值提升。

08

行业级工业互联网平台将率先探索出市场化商业模式

通用性行业平台由于纵深程度有限,市场供给与需求并不匹配,使得企业上云意愿不强,尚未探索出成熟的市场化模式。

行业级工业互联网平台由于兼具聚焦和普适双重特性,面对智能制造各行业不同需求,有望率先探索出可行的市场化商业模式。

2019年中国智能制造的十大发展趋势!

09

聚焦智能制造解决方案等细分行业

由于国内智能制造起步较晚,对于人才的挖掘和培养以及资金压力是企业所面临的最大问题,如果从几个发展方向上切入智能制造,或许只有大企业才能负担起。

如果中小企业从智能制造系统等细分领域深入研究将有望成为独角兽。

10

超高附加值制造领域将成为增材制造在工业领域的最优切入点

增材制造技术应用在桌面级应用以及简单的工艺大规模的场景不具备成本优势,而作为发动机、风电叶片、潜艇螺旋桨等为代表的超高附加值、超大型定制化单品制造领域可能会在2019年给增材制造在工业领域带来机会。

2019年中国智能制造的十大发展趋势!

2019年企业智能制造的发展趋势,这些关键点,你都注意到了吗?上面重点提到的大数据、工业互联网,在2018年的爆发后,在2019年依旧成为企业转型升级的重点!智能制造,已经成为国内制造业的必然趋势!

智能制造 AI 人工智能
上一篇:中国移动研究院常耀斌:主流人工智能技术栈的深度探讨和实践总结 下一篇:人工智能如何助力银行更“智慧”?
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

AI行业寒潮下,智能物流机器人产业迎来“风口”

“人工智能,前景很好,但‘钱’景不好 ” 、“2018年,人工智能的进展就是没有进展”、“2019年的AI行业已如石墨烯一样,尽显疲态”……一篇《投资人逃离人工智能》文章又给人工智能行业泼了一身冷水。人工智能融资难、“寒冬论”再一次戳痛每个人工智能从业者的心,激起大众的焦虑情绪。

AI报道 ·  16h前
人工智能应用在智慧社区五大场景

物联网、云计算、大数据、人工智能正逐步从概念走向应用。越来越多的传统产业也开始探索和创新,积极拥抱互联网和新技术。未来,人工智能技术可能会颠覆社区管理。

有熊 ·  17h前
基于PyTorch的CV模型框架,北大学生出品TorchCV

在机器学习带来的所有颠覆性技术中,计算机视觉领域吸引了业内人士和学术界最大的关注。

张倩、泽南 ·  18h前
高位截瘫患者重新行走:靠意念指挥外骨骼,法国脑机接口新突破

依靠介入头部的 2 个传感器,法国里昂的一名瘫痪男子 Thibault 实现了操控外骨骼装备来助力行走。

孙滔 ·  22h前
2008 年预测 2020 年生活方式:基本都实现了

美国皮尤研究中心曾在 2008 年预测 2020 年的生活方式,目前来看,该研究的预测基本已经实现。而对于未来 10 年,也就是 2030 年左右人们的生活,在 2017 年底的世界经济论坛上,800 多名信息和通讯技术领域的技术高管和专家给出了如下预测。

佚名 ·  22h前
机器学习的正则化是什么意思?

正则化的好处是当特征很多时,每一个特征都会对预测y贡献一份合适的力量;所以说,使用正则化的目的就是为了防止过拟合。

佚名 ·  22h前
为什么我的CV模型不好用?没想到原因竟如此简单……

机器学习专家 Adam Geitgey 近日发布了一篇文章探讨了这一简单却又让很多人头痛的问题,并分享了他为解决这一问题编写的自动图像旋转程序。

机器之心 ·  22h前
中文自动转SQL,准确率高达92%,这位Kaggle大师刷新世界纪录

首届中文NL2SQL挑战赛上,又一项超越国外水平的NLP研究成果诞生了。在NL2SQL这项任务上,比赛中的最佳成绩达到了92.19%的准确率,超过英文NL2SQL数据集WikiSQL目前完全匹配精度86.0%,执行匹配精度91.8%的最高成绩。

郭一璞 ·  23h前
Copyright©2005-2019 51CTO.COM 版权所有 未经许可 请勿转载