让神经网络更快更小更高效的模型优化技术MorphNet

作者: 鱼羊 2019-04-19 08:18:37

 想要调整你的神经网络来完成特定任务?这件事并没有想象中那么简单。

深度神经网络(DNN)是块好砖,不过想要搬动它,需要耗费的计算资源和时间成本可能非常昂贵。

现在,Google AI放出了MorphNet。他们用流行的图像分类神经网络Inception V2对其进行测试之后发现,在不牺牲精度的情况下,神经网络变得更快更小,算力消耗还减少了!

MorphNet是什么

MorphNet是一种神经网络模型优化( refinement)技术,走的是利用现有架构,针对特定任务优化的路线。

也就是说这是一个迁移学习问题。迁移学习的难点在于找出不变量,模型需要处理许多与此前训练的任务目标相近,但又不完全一样的任务,这会使模型性能大打折扣甚至崩溃。

而MorphNet的成功之处在于,只要将针对类似问题构建的神经网络作为输入,就能为新任务创造更小、更快、更合身的新架构。

MorphNet通过循环收缩和扩展两个阶段来优化神经网络。

收缩阶段

在收缩阶段,MorphNet会识别出低效神经元,并运用稀疏正则化器来修剪它们。

需要说明的是MorphNet会在考虑目标资源的情况下来计算一个神经元的损失,因此在训练过程之中,优化器能够意识到资源损失,从而认识到哪些神经元是高效的,哪些又是可以被移除的。

有些不明白?那么来看看下面这个例子,看MorphNet是如何计算神经网络的计算成本(如FLOPs,即每秒浮点运算次数)的:

假设一个表示为矩阵乘法的神经网络层,该层具有 2 个输入(Xn),6 个权重(a, b, …, f)以及 3 个输出(Yn;神经元)。也就是说评估这一层需要 6 次乘法。

MorphNet将乘法数视作输入数和输出数的乘积。在左侧的示例当中,虽然有两个权重为0,进行评估时仍然需要执行所有的乘法。但中间的示例显示了结构的稀疏性,MorphNet能够识别它的输出数为 2,并且该层的乘法数从 6 减少到了4。按照这个想法,MorphNet可以确定网络中每一个神经元的增量成本,以产生右侧这样更为有效的模型。

扩展阶段

在扩展阶段,MorphNet使用宽度乘数来均匀地扩展所有层的大小。

举个例子,如果扩展50%,那么对于低效层来说,神经元从 100 个收缩到 10 个之后,只会重新扩展到15个;而对于重要层来说,神经元只会从 100 个收缩到 80 个,重新扩展后则可能达到 120 个,并且获得更多可支配的资源。

也就是说,MorphNet的最终效果是将计算资源从网络中效率低的部分重新分配到效率高的部分。

Google AI出品:让神经网络更快更小更高效的模型优化技术MorphNet

 MorphNet优化AI模型

效果怎么样

Google AI团队用MorphNet对Inception V2网络模型进行了训练。

Google AI出品:让神经网络更快更小更高效的模型优化技术MorphNet

 图片截自论文MorphNet论文

基线方法是使用宽度乘数,通过均匀缩小每个卷积的输出数量来权衡精度和算力消耗(红色)。

MorphNet方法则直接以算力消耗为目标,在收缩模型时生成更好的权衡曲线(蓝色)。

在同等精度之下,MorphNet方法将算力消耗降低了11%到15%。

在对Inception V2的优化上MorphNet表现出色,对于其他的网络模型,MorphNet也同样好用。

Google AI出品:让神经网络更快更小更高效的模型优化技术MorphNet

 图片截自论文MorphNet论文

既成功压缩了模型尺寸/ FLOPs,在质量上又几乎没有损失,果然Google出品,必属精品。

这么好用的东西,Google已经自己用起来了。Google AI团队表示,MorphNet已应用于Google多个生产规模的图像处理模型。

传送门

MorphNet现已开源。

GitHub地址:

https://github.com/google-research/morph-net

论文地址:

https://arxiv.org/pdf/1711.06798.pdf

神经网络 数据 图形
上一篇:未来人工智能时代,我们的孩子能做什么工作? 下一篇:感知人工智能操作系统
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

草图变真人脸?AI:可以,多草都行

这篇论文讲技术人员如何在styleGAN顶层训练了一个深度神经网络来学习将源图像映射到styleGAN模型的输入,最终输出高质量的目标图像。

丰色 ·  16h前
通过细胞自动机,AI在「我的世界」学会了盖房子

许多研究采用了更为复杂的神经网络规则,被称为神经元细胞自动机(NCA)。但是其应用大多局限于2D结构,或是只能生成简单的3D结构。

子豪 ·  22h前
AI给老照片上色,真的准吗?技术圈和历史圈吵了1000帖

AI总是倾向于选择不鲜艳的颜色,让天空总是灰蒙蒙,人们的穿着都很朴素,地面充满灰尘和泥土。

梦晨 ·  22h前
OpenAI CEO Sam Altman:AI革命即将到来,我们需要新的系统

我们正处于这场技术变革的开端,我们拥有创造未来的宝贵机会。而这不是简单地解决目前的社会和政治问题,它必须为完全不同的社会而设计。

Sam Altman ·  1天前
人工智能优先战略将从哪里开始?

人工智能可以为企业带来竞争优势,并释放难以获得的巨大商机。因此,人们需要了解制定有效的人工智能优先策略的6个步骤。

李睿 ·  2天前
传统数据之外,哪里是通往智能之路?

为了实现这种更高阶的人工智能,寻求进步的公司都在积极探索,除了吸收更多数据并更好地管理数据的典型方法之外,我们还需要考虑更多创新的方法。

卿云 ·  2天前
实时高保真渲染,基于PlenOctrees的NeRF渲染速度提升3000倍

NeRF 方法拥有较好的渲染效果,但渲染速度极为缓慢,难以进行实时渲染。来自 UC 伯克利等机构的研究者使用一种名为 PlenOctrees 的数据结构为 NeRF 引入了一种新的数据表示,将渲染速度提升了 3000 多倍。

机器之心编辑部 ·  2天前
95%PyTorch库都会中招的bug!特斯拉AI总监都没能幸免

这就是最近Reddit上热议的一个话题,是一位网友在使用再平常不过的Pytorch+Numpy组合时发现。

明敏 ·  2天前
Copyright©2005-2021 51CTO.COM 版权所有 未经许可 请勿转载