Gartner:大众对人工智能的五个误解

作者: 亿欧网 2019-03-13 08:30:07

Gartner:大众对人工智能的五个误解

截至2018年H1,中国人工智能企业共计922家,其中97%的企业成立于本世纪,另有27家企业成立于2000年以前,多为软件信息服务类、工业制造类企业,共获得3658.6亿元投资。

人工智能快速发展背后其实隐藏着大众对于人工智能的一些误解,这些误解可能来自于媒体的鼓吹,也可能来自大众自身的认知等。目前,人工智能还处于“弱人工智能”阶段,但部分媒体大肆鼓吹人工智能的作用及影响,夸大事实,导致大众对其期望值过高并产生错误的认知。

Gartner揭示了大众对于人工智能常见的五个误解:人工智能运行方式与人类大脑一样、智能机器可以自我学习、人工智能可以摆脱偏见、人工智能仅能替代无需高学历的重复性工作、并不是每家公司都需要制定人工智能战略。

对于人工智能能够为各企业机构完成哪些任务,IT与业务***们时常感到困惑,并深受多个人工智能错误观念的困扰。全球领先的信息技术研究和顾问公司Gartner认为,开发人工智能项目的IT与业务***必须分清现实与谬见,以制定其未来战略。Gartner研究副总裁Alexander Linden表示:“随着IT技术不断进入各企业机构,业务与IT***必需充分了解人工智能将如何为其公司创造价值及其局限性。只有成为企业机构战略的一部分并得到正确使用,人工智能技术才能实现价值。”

Gartner揭穿了关于人工智能的五个常见谬见与误解。

谬见一:人工智能运行方式与人类大脑一样

人工智能是一门计算机工程学科。就其现状而言,它由解决问题的各种软件工具组成。虽然某些形式的人工智能可能给人们留下很聪明的印象,但认为当前的人工智能与人类智能相似或相等的想法可能是不现实的。

Linden先生表示:“虽然某些形式的机器学习(ML)——人工智能之一——可能受到了人类大脑启发,但并不能与之媲美。例如,图像识别技术比大部分人类都更加准确,但却无法解决数学问题。当前的人工智能可以很好地处理单项任务,然而如果任务条件发生些许变化,它就会变得无能为力。”

谬见二:智能机器可以自我学习

在开发基于人工智能的机器或系统过程中人类干预必不可少,包括经验丰富的人类数据科学家,他们负责执行各种任务,如:构思问题、准备数据、确定适用的数据集、移除训练数据中的潜在偏见(参见谬见3)以及——最为重要的是——持续更新软件,以便将***知识与数据集成至下一个学习周期。

谬见三:人工智能可以摆脱偏见

每一项人工智能技术均基于人类专家所提供的数据、规则及其他类型的输入信息。如同人类一样,人工智能天生也存在或多或少的偏见。Linden先生认为:“目前,还无法完全消除人工智能的偏见,但我们会尽可能地减少偏见。除了技术性解决方案(例如,不同的数据集),还必需确保人工智能工作团队的多样性,让团队成员相互审查工作。这种简单流程可显着减少选择与确认方面的偏见。”

谬见四:人工智能仅能替代无需高学历的重复性工作

人工智能能够让各企业通过预测、分类与分组而制定更加准确的决策。由于这些能力,基于人工智能的解决方案可以替代普通任务,同时为其他复杂任务提供支持。

典型的例子要属医疗保健领域里的影像学人工智能。基于人工智能的胸部X光应用程序可以比放射学家更快速地检测出疾病。在金融与保险行业,机器人顾问可用于理财或防欺诈。但是,人工智能的这些能力并未让人类置身事外,而是由人类处理异常情况。随着人工智能在工作场所不断发展,业务主管与IT***们应调整工作配置与能力规划,并为现有员工提供再培训。

谬见五:并不是每家公司都需要制定人工智能战略

各个企业机构都应该考虑人工智能对其战略所带来的潜在影响,并研究如何将该技术应用到企业机构的业务问题之中。在许多方面,逃避人工智能等同于放弃下一阶段的自动化,而这最终会令企业机构失去竞争优势。

Linden先生总结道:“即使当前的战略是‘不使用人工智能’,这也应当是基于研究与考量的清醒决定。与其他每一项战略一样,对这一决定也应定期重新考虑,并根据企业机构需求做出相应调整。人工智能需求可能会不期而至。”

人工智能 AI
上一篇:未来出行第一题:自动驾驶的治堵方案真的可行吗? 下一篇:一篇AI打麻将的论文,理科生眼中的麻将是这样的
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

大数据和人工智能如何协同工作

人工智能和机器学习如何帮助组织从大数据中获得更好的业务见解?需要了解人工智能和大数据分析的下一步发展。大数据技术并不像几年前那样广受关注,但这并不意味着大数据技术没有得到发展。如果说有什么不同的话,那就是大数据的规模正在变得越来越大。

Kevin Casey ·  19h前
麻省理工学院开发出组装机器人:未来可建造太空殖民地

麻省理工学院博士生本杰明·杰内特(Benjamin Jenett)和原子中心的尼尔·格申费尔德教授(Neil Gershenfeld)在《电气电子工程师学会机器人与自动化快报》科学期刊上发表报告称,开发出一种组装机器人原型,它可以用很小的零件制成大型结构。

技术力量 ·  20h前
刷脸取件被小学生“破解”!丰巢紧急下线

近日,#小学生发现刷脸取件bug#的话题引发关注!这是真的吗?都市快报《好奇实验室》进行了验证。

好奇实验室 ·  20h前
深度学习/计算机视觉常见的8个错误总结及避坑指南

人类并不是完美的,我们经常在编写软件的时候犯错误。有时这些错误很容易找到:你的代码根本不工作,你的应用程序会崩溃。但有些 bug 是隐藏的,很难发现,这使它们更加危险。

skura ·  20h前
AI艺术日渐繁荣,未来何去何从?

利用人工智能创作而成的画作近年来越来越受瞩目,有的作品甚至能在知名拍卖行拍得高价。但这类作品仍有不少问题需要解答,比如它的作者是开发出算法的程序员还是计算机呢?AI艺术的市场未来将走向何方呢?

网易智能 ·  21h前
人工智能如何改变医疗保健行业

人工智能医疗公司的首席执行官对于人工智能在医学上的应用,如何购买人工智能解决方案,以及人工智能在医疗领域的未来发展进行了阐述。

James Maguire ·  1天前
2019年深度学习自然语言处理十大发展趋势 精选

自然语言处理在深度学习浪潮下取得了巨大的发展,FloydHub 博客上Cathal Horan介绍了自然语言处理的10大发展趋势,是了解NLP发展的非常好的文章。

HU数据派 ·  1天前
4 分钟!OpenAI 的机器手学会单手解魔方了,完全自学无需编程 精选

OpenAI 的机器手学会单手解魔方了,而且还原一个三阶魔方全程只花了 4 分钟,其灵巧程度让人自叹不如。

佚名 ·  1天前
Copyright©2005-2019 51CTO.COM 版权所有 未经许可 请勿转载