说出你的需求,我们AI给你写代码

作者: 乾明 2019-02-26 15:34:27

 说你想干什么,AI就能自动写代码。

现在,我们离这个目标又近了一步。

近日,MIT的一个研究团队放出了新的研究成果。

他们提出了一种灵活组合模式识别和推理的方法,在无监督学习的情况下, 来解决AI自动编程遇到的问题。

先给你看几个例子:

任务要求:

给定一个数组,计算数字翻转过来之后的中位数。

AI会给出代码:

(reduce(reverse(digits(deref (sort a)(/ (len a) 2)))) 0

(lambda2 (+(* arg1 10) arg2)))

任务要求:

输入:

1, [-101, 63, 64, 79, 119, 91, -56, 47, -74, -33]

4, [-6, -96, -45, 17, 26, -38, 17, -18, -112, -48]

输出:

39

8

AI会给出的代码:

(MAXIMUM (MAP DIV3 (DROP input0 input1)))

这是怎么做到的?

给人类程序员一个任务,在开始写代码之前,会根据自己的经验来判断代码架构是什么样的。如果没有经验,就要采取推理的方式,来完善代码架构。

这个AI系统,就是模仿了人类结合模式识别和推理写代码的方式。

说出你的需求,我们AI给你写代码 | MIT新研究

模型分为两个模块,分别是概要生成器(sketch generator)和代码合成器( program synthesizer)。

输入任务要求之后,先经过概要生成器,生成满足任务要求概率比较高的代码概要,即可能满足任务要求的初始代码,细节并不丰富。然后,代码概要进入代码合成器模块,找到满足任务要求的模块。

概要生成器,是一个带有注意力机制的seq2seq循环神经网络(RNN),在给定任务之后,通过LSTM编码器对其进行编码,然后再逐token解码。

代码合成器,有两个组成部分:广度优先概率枚举器和神经网络识别器。前者根据可能性从大到小枚举代码sketch, 后者根据任务要求来指导这一过程。

具体效果怎么样?

为了验证模型的性能,研究团队选择了两个模型与其进行对比。

分别是只有合成器的模型(Synthesizer only)和只有生成器的模型(Generator only)。

只有合成器的模型,相当于研究中代码合成器模块,进行模式识别之后,从头开始枚举所有可能的编码。与微软研究院研究团队2016年提出的“Deepcoder”模型媲美。

只有生成器的模型,相当于研究中概要生成器模块,用来预测完整的代码。与微软研究院和MIT团队在2017年提出的“RobustFill”模型媲美。

进行对比的任务是数组列表、字符串转换和自然语言要求。

在数组列表任务中,与其他两项研究相比,研究中的模型可以在简单的程序中呈现很好的性能。

说出你的需求,我们AI给你写代码 | MIT新研究

在字符串转换任务中,表现要比只有合成器的模型要好,并且在一定情况下,会好于只有生成器的模型。

说出你的需求,我们AI给你写代码 | MIT新研究
说出你的需求,我们AI给你写代码 | MIT新研究

真正展现模型能力的,是在AlgoLisp数据集中进行的测试,这一数据集中,不仅有数组列表和字符串相关的输入输出示例,还有相应的自然语言描述。

在这个数据集上,研究者检验了模型在非结构化数据情况下的性能。

测试结果表明,模型的表现完全超过了先前学者的研究。

说出你的需求,我们AI给你写代码 | MIT新研究

而且,在包含“Even”和“Odd”要求的情况下,性能更加突出了,表明了模型的通用性更强。

如果你对这个研究感兴趣,可以阅读论文,来获取更多的研究细节。

说出你的需求,我们AI给你写代码 | MIT新研究

传送门:

Learning to Infer Program Sketches

https://arxiv.org/abs/1902.06349

AI 数据 人工智能
上一篇:机器学习的七大谣传,这都是根深蒂固的执念吧 下一篇:机器学习中如何处理不平衡数据?
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

关于AI在游戏领域的5个预测,你不一定都知道

未来,人工智能的发展将如何帮助开发者创造更好的游戏呢?以下是对人工智能在游戏产业中的5个预测。

Yu ·  15h前
人工智能如何改变医疗保健行业

当今世界最具前瞻性的两项技术是人工智能(AI)和机器人技术。实现这两种技术可以导致多个行业垂直领域的创新,包括医疗保健行业。

科幻网 ·  18h前
Epoch不仅过时,而且有害?Reddit机器学习板块展开讨论

Epoch最大的好处是确保每个样本被定期使用。当使用IID抽样时,你只要能想办法确保所有样本被同样频繁地使用就好了。

梦晨 ·  20h前
人工智能寒冬又到?美国教授arxiv发文批判AI,遭reddit网友狂喷

人工智能又被批评了?美国教授arxiv发文批评AI有四个误区,却不料遭reddit网友炮轰炒冷饭。

佚名 ·  20h前
企业的人工智能计划获得成功需要做的10件事

在实施人工智能的计划中,一些企业可能会忽略一些重要的细节,这些细节可能意味着人工智能计划成败之间的差异。

HERO ·  1天前
人工干预如何提高模型性能?看这文就够了

下面我先从使用机器学习模型来推理系统入手,再展开人工干预的推理循环的技术介绍。

AI科技大本营 ·  1天前
人工智能在国防领域将发挥什么作用?

2021年4月26日,根据数据与分析公司GlobalData新发布的一项名为《关于航空航天与防务领域中的人工智能技术专题研究》的研究报告,在未来战场中,人工智能技术或将充当辅助力量——人与机器协同工作,相较于人类,人工智能可以更有效地执行一些特定任务。

安防展览网 ·  1天前
做出电影级的 CG 渲染!斯坦福大学研究人员提出神经光图渲染

近日,一篇题为Neural Lumigraph Rendering的研究论文声称,它对现有的2个数量级图像进行了改进,展示了通过机器学习管道实现实时 CG 渲染的几个步骤。

佚名 ·  1天前
Copyright©2005-2021 51CTO.COM 版权所有 未经许可 请勿转载