揭秘Google Brain:专注纠正算法错误/解决AI偏见

作者: 佚名 2019-01-30 10:40:46

 腾讯科技讯 1月29日消息,据外媒报道,用谷歌***执行官桑达尔·皮查伊的话说,对于负责推进“比电或火更具有深刻意义”的人工智能(AI)技术的人来说,杰夫·迪恩(Jeff Dean)是个非常冷静的人。

作为这家科技巨头的AI主管,迪恩负责领导的部门对谷歌的未来至关重要。即使在今年达沃斯世界经济论坛的狂热气氛中,迪恩仍在禅修。显然,这样艰巨的任务并未令他感到不安。

谷歌人工智能部门主管杰夫·迪恩(Jeff Dean)

迪恩在谷歌成立之初的使命,就曾帮助应对“几乎可以肯定”来自外太空的威胁。

太空射线

早在世纪之交,谷歌的搜索引擎就开始出现故障,而其程序员却对这一原因感到迷惑不解。正是迪恩及其密友桑杰·格玛瓦特(Sanjay Ghemawat)诊断出了外太空问题。

迪恩解释说,谷歌搜索服务在廉价的硬件上运行,“它们就像是用打包电线和口香糖捆绑构成的”,因此它容易受到“极低概率事件”的影响。

迪恩称:“来自外太空的特定射线会进入地球,并击中存设备的存储单元上,将0或1翻转为1或0。如果有人正在处理大量数据,这种情况尤其糟糕,因为突然之间,数据中有些随机位将被翻转和损坏。”

他补充说:“目前大多数机器都有类似问题的硬件保护措施。但是,谷歌早期使用的机器并没有真正做到这一点。”

然而,近年来,谷歌的***机器吸引了迪恩的全部关注,而该公司大胆命名的“Brain Team”也是如此。这个团队的使命是“使机器智能化,改善人们的生活”。即使目前谷歌的人工智能应用更显平淡无奇,这一使命也令人觉得雄心勃勃。

机器学习使谷歌用户能够通过搜索照片中出现的对象(例如,通过键入Cake或Cat)来检索照片,而且机器学习也是语音识别工具的开发基础,语音识别工具可以将多种语言的音频转换为文本。

谷歌的翻译工具是其AI团队的另一个成功之处,但也提供了一个早期的例子,说明算法可以“向现实世界学习,而不是向我们希望的世界学习”。

与偏见作斗争

迪恩解释说,当一个算法被输入大量文本时,它将自学如何识别通常组合起来的单词。

迪恩称:“举例来说,你可能知道这样的问题,即算法经常将医生更多地与‘他’而不是‘她’联系在一起,而将护士更多地与‘她’而不是‘他’联系起来。但你也会知道,外科医生与手术刀有关,木匠与锤子有关。因此,这些算法的优点在于,它们可以学习这些类型的模式和相关性。”

迪恩表示,这项任务是找出你想让算法找出哪些偏见,而他的团队和AI领域的许多人都在努力探索这背后的科学。迪恩称:“很难说我们是否能找到***的无偏见算法。”

职业社交网站LinkedIn创始人艾伦·布鲁(Allen Blue)

公司努力解决这些问题的一个令人惊讶的例子是职业社交网站LinkedIn。当其5.62亿用户登录到自己的账户上时,他们会得到关于工作和联系人的独特建议,而这些都是由AI提供支持的。更重要的是,使用LinkedIn的招聘人员会收到一份经过机器学习筛选的理想候选人名单。

但LinkedIn联合创始人艾伦·布鲁(Allen Blue)很快就发现了这个过程中存在的一个问题,即女性在入围名单上的排名还不够高。布鲁说:“我们所能做的就是说:‘好吧,我们会纠正这个算法。这样它就能以与实际匹配搜索标准的同等比例筛选男性和女性候选人,并对他们进行排序,以确保这些女性不会意外地被漏掉。”

更多样性

但布鲁承认,解决这个问题只是AI冰山的一角。他解释说:“我们刚刚达到这样的水平,即理解了如何以***的意图构建一种机器学习算法,但仍然无意中在结果中引入了偏见。”

布鲁最喜欢引用的例子是面部识别技术。他称:“***个版本面部识别应用的训练对象是名人照片,这些名人大多是白人和男性,这意味着白人男性的面部识别准确率可达97%,而非洲女性的准确率仅为3%。”他认为,如果不增加AI算法构建者的多样性,就不可能有任何补救办法。

早期对面部识别的尝试遇到了偏见问题

布鲁说:“当我们观察LinkedIn上真正拥有AI技能的人时,只有22%的人是女性。” 更糟糕的是,他补充说:“女性的角色倾向于更注重研究,或更倾向于教学,而男性的角色更倾向于领导。”

布鲁承认:“每个人都有偏见,但如果女性不在这个方面提供帮助,我们就不能完全理解人们是如何设计AI的。”

尽管有这些警告,但当谈到AI的潜在积极作用时,布鲁和迪恩都显得热情洋溢。在谈到招聘过程时,布鲁认为,计算机甚至可以教会我们如何消除人类的缺点。

洪水和地震

布鲁称:“当你走进去与某人面对面交谈时,你会得到很好的情绪解读,或从他们身上获得能量亦或是其他什么,这是建立在你的特质基础之上的,因此对于怎样才能成为好员工的观点是存在偏见的。AI可以帮助你从一种消除偏见的观点中分离出那种良好的感觉,这就是我所说的纯粹的机器与人类协作的意思。”

对于迪恩来说,谷歌的AI团队在世界各地的人道主义问题上所做的工作是他们最自豪的成就,比如能够预测洪水和地震余震的系统。

数据隐私是今年达沃斯世界经济论坛的热点问题

特别关注医疗保健和生物科学帮助催生了一种工具,它可以从视网膜图像中诊断一种叫做糖尿病视网膜病变的疾病,而不需要眼科医生介入。

迪恩在世界经济论坛上对AI的这些用途始终称赞有加。在这次论坛上,诸多会议都集中讨论了数据隐私和对技术的监管问题。

就谷歌而言,迪恩相信,该公司的内部原则将有助于防范AI的潜在滥用问题,并透露,他的团队“肯定决定不公布我们认为可能会产生负面影响的某些成果”。

但迪恩说,防止滥用机器学习的方法是吸引合适的人类来该领域工作。他表示:“我们需要更多的人研究这类领域,更多的人对这些领域感到兴奋,因为这就是我们取得进步和解决社会许多问题的方式。”(腾讯科技审校/金鹿)

Google Brain 人工智能 机器学习
上一篇:一文读懂2019年IT及大数据行业趋势 下一篇:地铁也要自动驾驶,全国最快的轨道客车亮相北京
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

面部识别的利与弊:是福还是祸?

虽然现代技术使面部识别更加精确和安全,但与面部识别隐私问题和监控有关的担忧也在增加。因此,让我们在这篇文章中探讨一下这该技术的利与弊。

Naveen Joshi ·  2021-06-01 16:36:22
人工智能和5G如何结合以实现物联网收入最大化

网络系统通过信令和使用软件以及分析来检测和分类设备非常棘手,并且对有限且日益紧张的网络资源提出了巨大的需求。然而,解决这些问题有一个主要解决方案:采用人工智能、自动化和5G技术。

Jordi Castellvi ·  2021-06-01 13:49:15
MIT团队最新研究,仅靠LiDAR和2D地图实现端到端自动驾驶

最近, MIT 计算机科学与人工智能实验室(CSAIL)团队成功展示了一种基于机器学习的自动驾驶系统,该端到端框架仅使用 LiDAR获取的原始 3D 点云数据和类似于手机上的低分辨率 GPS 地图就能进行自主导航,并且大大提升了鲁棒性。

文龙 ·  2021-06-01 12:47:51
自然语言处理(NLP)的历史及其发展方向

自然语言处理的历史是一个充满曲折的故事。它从徒劳的研究开始,经过多年卓有成效的工作,最后结束于一个我们仍在试图找出该领域极限的时代。今天,让我们来一起探索这一AI科学分支的发展。

佚名 ·  2021-06-01 12:46:26
是福还是祸?人脸识别技术的利与弊

面部识别并不是一项全新的技术,但人工智能和机器学习不断使面部识别变得更好。苹果通过引入具有 3D 扫描功能的面部生物识别系统和 iPhone 的 Face ID,提高了面部识别的标准。

Naveen Joshi ·  2021-06-01 11:11:01
人工智能能否使机器具有流体智力?

麻省理工学院和奥地利研究人员为灵活的人工智能创造了“液体”机器学习。

千家网 ·  2021-06-01 10:38:55
高真实感、全局一致、外观精细,面向模糊目标的NeRF方案出炉

自 NeRF 被提出后,有多项研究对其加以改进。在本篇论文中,上海科技大学的研究者提出了首个将显式不透明监督和卷积机制结合到神经辐射场框架中以实现高质量外观的方案。

Haimin Luo等 ·  2021-06-01 09:57:39
大脑模拟NLP,高德纳奖得主:神经元集合演算用于句子解析

一个简单的大脑模型为人工智能研究提供了新的方向。世界顶尖计算机科学理论学家、哥德尔奖和高德纳奖获得者、哥伦比亚大学计算机科学教授 Christos Papadimitriou 关于「大脑中单词表征」的演讲。

Ben Dickson ·  2021-06-01 09:39:24
Copyright©2005-2021 51CTO.COM 版权所有 未经许可 请勿转载