自然语言处理(nlp)比计算机视觉(cv)发展缓慢,而且更难!

作者: 霍华德 2018-11-07 09:25:07

1. 抢跑的nlp

nlp发展的历史非常早,因为人从计算机发明开始,就有对语言处理的需求。各种字符串算法都贯穿于计算机的发展历史中。伟大的乔姆斯基提出了生成文法,人类拥有的处理语言的最基本框架,自动机(正则表达式),随机上下文无关分析树,字符串匹配算法KMP,动态规划。

nlp任务里如文本分类,成熟的非常早,如垃圾邮件分类等,用朴素贝叶斯就能有不错的效果。20年前通过纯统计和规则都可以做机器翻译了。相比,在cv领域,那时候mnist分类还没搞好呢。

90年代,信息检索的发展提出BM25等一系列文本匹配算法,Google等搜索引擎的发展将nlp推向了高峰。相比CV领域暗淡的一些。

2. 特征抽取困难的cv

cv的前身就有一个领域叫图像处理,研究图片的压缩、滤波、边缘提取,天天摆弄着一个叫lenna的美女。

早期的计算机视觉领域受困于特征提取的困难,无论是HOG还是各种手工特征提取,都没办法取得非常好的效果。

大规模商业化应用比较困难。而同期nlp里手工特征➕svm已经搞的风生水起了。

3. 深度学习的崛起- 自动特征提取

近些年,非常火爆的深度学习模型简单可以概括为:

深度学习 = 特征提取器➕分类器

一下子解决cv难于手工提取特征的难题,所以给cv带来了爆发性的进展。深度学习的思路就是让模型自动从数据中学习特征提取,从而生成了很多人工很难提取的特征:

4. nlp的知识困境

不是说nlp在这波深度学习浪潮下没有进展,而是说突破并没有cv那么巨大。很多文本分类任务,你用一个巨复杂的双向LTSM的效果,不见得比好好做手工feature + svm好多少,而svm速度快、小巧、不需要大量数据、不需要gpu,很多场景真不见得深度学习的模型就比svm、gbdt等传统模型就好用。

而nlp更大的难题在于知识困境。不同于cv的感知智能,nlp是认知智能,认知就必然涉及到知识的问题,而知识却又是最离散最难于表示的。

自然语言处理 计算机视觉 深度学习
上一篇:用Amazon SageMaker训练和部署机器学习模型 下一篇:当AI邂逅少儿经济:如何才能C位出道?
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

18个挑战项目带你快速入门深度学习

AlphaGo 大战李世?h之后,深度学习技术便在国内变得异常火。吸引了大批的技术人员争相学习,那么到底如何才能更快速的入门深度学习呢?下面给大家介绍的 18 个挑战项目,通过实践动手带你快速入门深度学习!

实验楼 ·  2019-10-10 14:48:19
盘点 | 8个你可能不知道的深度学习应用案例

深度学习与传统机器学习系统的不同之处在于,它能够在分析大型数据集时进行自我学习和改进,因此能应用在许多不同的领域。

天极网 ·  2019-10-10 14:15:18
2019年较热门的5大深度学习课程

今天,我们将和大家盘点一下,当下较流行的深度学习资源/课程,可以帮助你们提升深度学习技能。

猿哥 ·  2019-09-26 05:16:24
DeepMind一次性开源3个新框架!深度强化学习应用落地即将迎来春天?

深度强化学习(Deep Reinforcement Learning,DRL)一直是近年来人工智能的一些重大突破的核心。然而,尽管 DRL 有了很大的进步,但由于缺乏工具和库,DRL 方法在主流解决方案中仍然难以应用。

杨鲤萍 ·  2019-09-20 09:38:18
一步一步带你完成深度学习与对象检测之人脸识别

要进行人脸识别,就要搜集用户的人脸图片,我们从网站上搜集了几个明星的照片来进行本期文章的分享。此部分文章是人脸识别的第一部分,人脸数据的搜集与提取,后期我们分享人脸识别系统的神经网络训练与人脸识别。

人工智能研究所 ·  2019-09-18 07:20:34
看懂这十步,8岁的小朋友都能理解深度学习

如果对当今人工智能的主流技术——深度学习没有了解,可能真的会有人觉得,当前的科学家们在创造无所不能、无所不知的电影AI形象。那么,如何用最浅显的方式,给大众解释什么是深度学习呢?快来看看吧!

佚名 ·  2019-09-17 16:56:39
PyTorch版《动手学深度学习》开源了,最美DL书遇上超赞DL框架

李沐等人的开源中文书《动手学深度学习》现在有 PyTorch 版实现了。不论是原书中的示例代码,还是实战项目,原来的 MXNet 都可以无缝转化到 PyTorch 代码。

ShusenTang ·  2019-09-17 10:23:45
2019年10大机器学习Q&A,面试应知!

本文整理了一些最常见的机器学习面试问题及其相应的回答。机器学习有志者以及经验丰富的ML专业人员可以在面试前以此巩固其基础知识。

读芯术 ·  2019-09-09 11:07:00
Copyright©2005-2019 51CTO.COM 版权所有 未经许可 请勿转载