为什么CNN能自动提取图像特征

作者: lietal 2018-10-29 13:11:54

1.介绍

在大部分传统机器学习场景里,我们先经过特征工程等方法得到特征表示,然后选用一个机器学习算法进行训练。在训练过程中,表示事物的特征是固定的。

 

后来嘛,后来深度学习就崛起了。深度学习对外推荐自己的一个很重要的点是——深度学习能够自动提取特征。如果你是从 DNN 开始了解深度学习,你会对 “深度学习能够自动提取特征” 很迷茫。但是如果你是从 CNN 开始了解深度学习的,你就会很自然地理解 “深度学习能够自动提取特征”。

2.提取特征

CNN 网络主要有两个算子,一个是卷积层,另一个是池化层。大部分人对于池化层并没有什么理解难度。池化层无非滑动一个滑动窗口,滑动窗口之内***值或者取平均值。对于卷积层,我们大部分人都是看下面的图了解的。卷积层也是滑动一个滑动窗口,滑动窗口之内做卷积运算。

理解 CNN 的卷积层和池化层如何运算,并不能自动给我们关于 CNN 原理的洞见。我们依然存在疑惑: 为什么 CNN 的卷积层是这样的?Lecun 大神设计 CNN 的卷积层是怎么考虑的?

为了理解这个问题,我们先思考一个问题:提取图片特征最朴素的想法是什么?简化问题,我们要分类黑白图片中的字母 A 还是 X。

 

这两个有一个鲜明区别是 A 的顶部模式。

如果能在图片中抽取 A 的顶部模式,图片中的字母是 A; 如果不能,图片中的字母是 X。为了提取图片是否包含 A 的顶部模式,我们将 A 的顶部模式在图片中滑动,切分处理的局部图片和 A 顶部模式做内积。下图显示是 A 图片的 1 和 2 部位切分出来的局部图片和 A 的顶部模式做内积。

 

根据图中表示,A 图片的 1 部位是 A 字母的顶部,内积为 4; 2 部位不是 A 顶部,内积只有 1。在 A 图片中滑动 A 顶部模式,得到的结果为

然后我们取其中***值得到最终结果是 4。这是我们可以说图片包含 A 顶部模式的的 “倾向性” 或者说 “可能性” 是 4。我们就提取了一个特征。

X 那张图按照相同的操作,结果为 3。这个结果是从 X 的交叉部位得到的。

这里我们会发现:A 的顶部模式在图片中滑动其实就是 CNN 里卷积层做的事情, A 的顶部模式就是卷积核;同时,在内积结果上取***值就是***池化层的操作。也就是说 CNN 用卷积层和池化层,实践了最朴素的图片特征提取方法。当然了,真实世界的 CNN 要复杂得多: 1) 真实世界的图片和卷积核是多层的。这个好理解,在图片是多层的情况下,局部模式肯定也是多层,卷积核自然也是多层的。2) 真实世界的 CNN 并不是一个卷积层搭配一个池化层,而是存在连续多层卷积层。这个也好理解。在这个时候,局部模式是有多个连续卷积核表示的。

3.自动学习

通过上面的讲解,我们知道 CNN 模型是如何利用卷积层和池化层提取图片的特征,其中的关键是卷积核表示图片中的局部模式。还是拿上面例子来说,我们知道并且选用了 A 的顶部模式这个卷积核。

但是在真实世界中我们是不能做。对于大规模图片库我们并不知道那个局部模式是有效的。即使我们选定局部模式,也会因为太过具体而失去反泛化性。那么我们怎么应对这个问题呢,即如何确定卷积核的值呢?

这里就要讲到大名鼎鼎梯度向后传播算法。一开始我们随机初始化卷积核的参数,然后通过基于梯度向后传播算法的优化算法,自适应地调整卷积核的值,从而最小化模型预测值和真实值之间的误差。这样得到的卷积核的参数不一定直观,但是能够有效地提取特征,使得模型预测值和真实值之间的误差最小。为了简化问题,下面我们还是用单层图片做例子。即使简化到单层图片,我们依然觉得计算卷积层和池化层的梯度比较难。为了进一步直观化,我们将卷积层分解多个容易计算梯度的简单线性算子,将池化层分解容易计算梯度的多个简单操作。

通过分解卷积层和池化层,我们易得下面一系列计算梯度公式。

池化层本身没有参数,只需要把梯度往回传就行。这里我们要关注下***池化层:***值操作是选择窗口内***值,怎么看都不是连续函数,就不可能存在导数(梯度)。假设

即矩阵 x 中第 i 行第 j 列值***,那么

另外一个问题就是怎么求卷积层的梯度。我们用 conv(xx,ww)conv(xx,ww) 表示卷积, conv(xx,ww)i,jconv(xx,ww)i,j表示卷积结果中的第 i 行第 j 列, xconv−i,jxconv−i,j 表示用于生成卷积结果第 i 行第 j 列的图片局部(即 xconv−i,j⋅ww=conv(xx,ww)i,jxconv−i,j⋅ww=conv(xx,ww)i,j )。卷积核参数的梯度可以用下面的公式计算

 

至于梯度怎么传回去呢?如下图所示,我们先定义 δ(i,j)δ(i,j) 表示图片大小的矩阵,生成第 i 行第 j 列的卷积结果的图片区域用卷积核参数填充,其他区域为 0。

此时我们得到梯度往回传的公式。

 

4.总结

通过卷积核刻画图片的局部模式,CNN 能够提取图片的特征; 通过梯度向后传播算法,CNN 能够确定每个卷积核的参数,从而实现自动提取图片的特征。这样,我们应该很自然地理解 “深度学习能够自动提取特征” 了。

为什么 CNN 等深度学习模型自动提取特征这么重要?我们可以从 Pedro Domingos [1] 关于 “机器学习本质是什么” 开始说起。Pedro Domingos [1] 认为:

表示是指我们如何表达相关特征,涉及到特征工程、特征算子和特征组合等问题。目标是指我们想模型学习到什么,涉及问题建模和目标函数。优化是怎么计算得到模型,涉及梯度下降、随机梯度下降或者演化计算等优化算法。在大部分传统机器学习场景里,表示和目标是分离的。在用优化算法求解目标的过程中,表示事物的特征是固定的,并不会根据目标和优化的反馈自适应地调整特征。 

 

神经网络或者说深度神经网络,将表示和目标结合起来进行 “联合学习”。在深度学习模型训练过程中,特征相关的参数(比如 CNN 卷积核的参数)可以根据目标和优化的反馈(梯度)自适应地调整。特征能够自适应地调整,深度学习才有能力建立深度的和层次化的特征表达体系。

参考文献

[1] Domingos, Pedro. “A few useful things to know about machine learning.” Communications of the ACM 55.10 (2012): 78-87.

【编辑推荐】

  1. Keras还是TensorFlow?程序员该如何选择深度学习框架?
  2. AI的推动引擎——深度学习
  3. 前端工程师掌握这18招,就能在浏览器里玩转深度学习
  4. 人工智能已到瓶颈!院士“联名”反深度学习,并指出AI未来发展方向
  5. 详解知乎反作弊垃圾文本识别的深度学习实践

深度学习 CNN 提取图像
上一篇:海云捷迅任钟坪:AI从想法到实现,只需10次鼠标点击的距离! 下一篇:当AI遇上信息服务:百度大脑行业创新论坛在成都等你来撩
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

AI时代,需要发挥知识图谱+知识管理的双轮价值

AI时代,需要发挥知识图谱+知识管理的双轮价值,才能真正实现从流程驱动、数据驱动走向知识驱动。

东方林语 ·  2021-05-31 09:15:14
人工智能是如何改变日常商业运作的?

人工智能的使用也改变了我们如今开展业务的方式。从平凡的任务到数据分析,该技术使公司能够保持竞争优势。此外,使用AI可以改善个性化的客户体验以及改善风险管理。

佚名 ·  2021-05-28 17:24:32
数据分析技术:边缘人工智能的应用

为了避免不必要的非关键数据移动,AI正在向边缘设备返回计算能力,从而影响开发人员利用人工智能和数据分析技术。

Cassie ·  2021-05-27 15:22:19
Few-shot Learning(1)—机器学习中的任务优化空间

今天深度学习之所以成功,大量的数据是不可缺少的必要条件。我们训练的模型都是吃过见过后才有现在这样良好的表现。不过实际情况要收集到足够多的数据并非易事,今天我们就这个问题来学习 Few-shot Learning。

zidea ·  2021-05-27 08:38:47
人工智能促进企业实现端到端的智能自动化

对于正在从事或已经致力于此类现代化工作的IT主管们来说,人工智能(主要体现为机器学习技术)有望对自动化产生革命性影响,使他们更接近端到端过程自动化的梦想。

Maria Korolov ·  2021-05-26 10:04:09
光明面与黑暗面:人工智能与人类的未来

随着技术创新步伐的不断提高,重要的是要意识到即将到来的中断,而不仅仅是盲目地享受AI带来的好处。计算机超级智能可能会威胁到我们的生存,即使不是这样,如果我们能够负责任地发动第四次工业革命,仍然有很多大问题需要解决。

Mark Lippett ·  2021-05-26 09:48:12
8个深度学习中常用的激活函数

当在隐藏层和输出层中实现时,激活函数的选择非常关键。模型的准确性和损失很大程度上依赖于激活函数。此外,必须根据您对模型的期望来选择它们。例如,在二值分类问题中,sigmoid函数是一种最优选择。

deephub ·  2021-05-22 23:08:08
融合创新,降低门槛,飞桨推动人工智能走通工业大生产之路

5月20日,由深度学习技术及应用国家工程实验室与百度联合主办的WAVE SUMMIT 2021深度学习开发者峰会在北京召开。

佚名 ·  2021-05-21 10:26:39
Copyright©2005-2021 51CTO.COM 版权所有 未经许可 请勿转载