AI新人必看 | 参数和超参数还分不清楚吗?

作者: 佚名 2018-09-18 15:58:54

 

计算机学科里有太多的术语,而且许多术语的使用并不一致。哪怕是相同的术语,不同学科的人理解一定有所不同。

比如说:“模型参数(model parameter)”和“模型超参数(model Hyperparameter)”。

对于初学者来说,这些没有明确定义的术语肯定很令人困惑。尤其是对于些来自统计学或经济学领域的人。

我们来仔细研究一下这些条款。

什么是模型参数?

模型参数是模型内部的配置变量,其值可以根据数据进行估计。

  •  模型在进行预测时需要它们。
  •  它们的值定义了可使用的模型。
  •  他们是从数据估计或获悉的。
  •  它们通常不由编程者手动设置。
  •  他们通常被保存为学习模型的一部分。

参数是机器学习算法的关键。它们通常由过去的训练数据中总结得出。

在经典的机器学习文献中,我们可以将模型看作假设,将参数视为对特定数据集的量身打造的假设。

***化算法是估计模型参数的有效工具。

  •  统计:在统计学中,您可以假设一个变量的分布,如高斯分布。高斯分布的两个参数是平均值(μ)和标准偏差(西格玛)。这适用于机器学习,其中这些参数可以从数据中估算出来并用作预测模型的一部分。
  •  编程:在编程中,您可以将参数传递给函数。在这种情况下,参数是一个函数参数,它可能具有一个值范围之一。在机器学习中,您使用的特定模型是函数,需要参数才能对新数据进行预测。

模型是否具有固定或可变数量的参数决定了它是否可以被称为“参数”或“非参数”。

模型参数的一些示例包括:

  •  神经网络中的权重。
  •  支持向量机中的支持向量。
  •  线性回归或逻辑回归中的系数。

什么是模型超参数?

模型超参数是模型外部的配置,其值无法从数据中估计。

  •  它们通常用于帮助估计模型参数。
  •  它们通常由人工指定。
  •  他们通常可以使用启发式设置。
  •  他们经常被调整为给定的预测建模问题。

我们虽然无法知道给定问题的模型超参数的***值,但是我们可以使用经验法则,在其他问题上使用复制值,或通过反复试验来搜索***值。

当机器学习算法针对特定问题进行调整时(例如,使用网格搜索或随机搜索时),那么正在调整模型的超参数或顺序以发现导致最熟练的模型的参数预测。

  •  “许多模型有不能从数据直接估计的重要参数。例如,在K近邻分类模型中......因为没有可用于计算适当值的分析公式,这种类型的模型参数被称为调整参数。”

    - 第64-65页,《应用预测模型》,2013

如果模型超参数被称为模型参数,会造成很多混淆。克服这种困惑的一个经验法则如下:

如果必须手动指定模型参数,那么它可能是一个模型超参数。

模型超参数的一些例子包括:

  •  训练神经网络的学习速率。
  •  用于支持向量机的C和sigma超参数。
  •  K最近邻的K。

总之,模型参数是根据数据自动估算的。但模型超参数是手动设置的,并且在过程中用于帮助估计模型参数。

模型超参数通常被称为参数,因为它们是必须手动设置和调整的机器学习的一部分。

机器学习 参数 神经网络
上一篇:腾讯AI Lab开源首款自动化模型压缩框架:将深度学习装口袋 下一篇:机器学习未来将走向何方?英特尔-南大联合研究中心将给出答案
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

开发板能这么用?美国学者用Jetson Nano支持假肢,控制每一根手指

在一篇新论文中,来自明尼苏达大学等机构的研究者提出了一种基于嵌入式深度学习控制的神经假肢实现。

佚名 ·  2天前
机器学习如何影响系统设计:Learned Index Structures浅析

本文简要介绍了Learned Index Structures的实现和优缺点,希望可以给大家带来一些系统设计的启发和思路。

作者Victor ·  2天前
吴恩达的二八定律:80%的数据+20%的模型=更好的机器学习

一个机器学习团队80%的工作应该放在数据准备上,确保数据质量是最重要的工作,每个人都知道应该如此做,但没人在乎。

新智元 ·  2天前
机器学习在铁路缺陷检测中的实际应用

本文介绍了在铁轨的超声波检测过程中有效使用机器学习技术自动检测缺陷的经验,并提出了一种使用数学建模为神经网络创建训练数据集的有效方法,为实际缺陷图的识别提供了更高精度的指标。文中训练神经网络运算的原型实例,其实际缺陷图的预测精度高达92%。

李睿 ·  2天前
人工智能进军“古玩鉴定”,人类职业再遭冲击?

近两年,人工智能的风头虽然偶被5G、自动驾驶等所盖过,但其发展和热度并未因此受到影响。

林中易木 ·  3天前
机器学习概述

机器学习(Machine Learning)这个术语常常掩盖了它的计算机科学性质,因为它的名字可能暗示机器正在像人类一样学习,甚至做得更好。尽管我们希望有一天机器能够像人类一样思考和学习,但如今机器学习并不能超越执行预定义过程的计算机程序。

追求源于热爱i ·  3天前
为什么机器学习胜过人工智能?

人工智能、数据科学和机器学习都属于同一个领域。问题是,在这种情况下,它们中的哪一个能达到正确的目的。

Cassie ·  3天前
启动机器学习/深度学习项目的八种方法

从探索性的数据分析到自动机器学习(AutoML),组织需要使用这些技术来推动其数据科学项目发展,并建立更好的模型。

李睿 ·  3天前
Copyright©2005-2021 51CTO.COM 版权所有 未经许可 请勿转载