200种优秀机器学习教程汇总「史上最全」

作者: 云栖社区 2018-09-17 14:50:41

本文包含了迄今为止大家公认的优秀教程内容。它绝不是网上每个ML相关教程的详尽列表,而是经过精挑细选而成的,毕竟网上的东西并不全是好的。我作者汇总的目标是为了补充我即将出版的新书,为它寻找在机器学习和NLP领域中找到的最佳教程。

通过这些最佳教程的汇总,我可以快速的找到我想要得到的教程。从而避免了阅读更广泛覆盖范围的书籍章节和苦恼的研究论文,你也许知道,当你的数学功底不是很好的时候这些论文你通常是拿不下的。为什么不买书呢?没有哪一个作者是一个全能先生。当你尝试学习特定的主题或想要获得不同的观点时,教程可能是非常有帮助的。



我将这篇文章分为四个部分:机器学习,NLP,Python和数学。我在每个部分都包含了一些主题,但由于机器学习是一个非常复杂的学科,我不可能包含所有可能的主题。

如果有很好的教程你知道我错过了,请告诉我!我将继续完善这个学习教程。我在挑选这些链接的时候,都试图保证每个链接应该具有与其他链接不同的材料或以不同的方式呈现信息(例如,代码与幻灯片)或从不同的角度。

机器学习

从机器学习入手(machinelearningmastery.com)

机器学习很有趣!(medium.com/@ageitgey)

机器学习规则:ML工程的最佳实践(martin.zinkevich.org)

机器学习速成课程:第一部分,第二部分,第三部分(伯克利机器学习)

机器学习理论及其应用简介:用一个小例子进行视觉教程(toptal.com)
机器学习的简单指南(monkeylearn.com)

我应该使用哪种机器学习算法?(sas.com)

机器学习入门(sas.com)

初学者机器学习教程(kaggle.com/kanncaa1)

激活函数和Dropout函数

Sigmoid神经??元(neuralnetworksanddeeplearning.com)

激活函数在神经网络中的作用是什么?(quora.com)

神经网络中常见的激活函数的优缺点比较列表(stats.stackexchange.com)

激活函数及其类型对比(medium.com)

理解对数损失(exegetic.biz)

损失函数(斯坦福CS231n)

L1与L2损失函数(rishy.github.io)

交叉熵成本函数(neuralnetworksanddeeplearning.com)

偏差(bias)

偏差在神经网络中的作用(stackoverflow.com)

神经网络中的偏差节点(makeyourownneuralnetwork.blogspot.com)

什么是人工神经网络的偏差?(quora.com)

感知器

感知器(neuralnetworksanddeeplearning.com)

感知器(natureofcode.com)

单层神经网络(感知器)(dcu.ie)

从Perceptrons到Deep Networks(toptal.com)

回归

线性回归分析介绍(duke.edu)

线性回归(ufldl.stanford.edu)

线性回归(readthedocs.io)

Logistic回归(readthedocs.io)

机器学习的简单线性回归教程(machinelearningmastery.com)

机器学习的Logistic回归教程(machinelearningmastery.com)

Softmax回归(ufldl.stanford.edu)

梯度下降

在梯度下降中学习(neuralnetworksanddeeplearning.com)

梯度下降(iamtrask.github.io)

如何理解梯度下降算法(kdnuggets.com)

梯度下降优化算法概述(sebastianruder.com)

优化:随机梯度下降(斯坦福CS231n)

生成学习(Generative Learning)

生成学习算法(斯坦福CS229)

朴素贝叶斯分类器的实用解释(monkeylearn.com)

支持向量机

支持向量机(SVM)简介(monkeylearn.com)

支持向量机(斯坦福CS229)

线性分类:支持向量机,Softmax(Stanford 231n)

反向传播

你应该了解的backprop(medium.com/@karpathy)

你能给出神经网络反向传播算法的直观解释吗?(github.com/rasbt)

反向传播算法的工作原理(neuralnetworksanddeeplearning.com)

通过时间反向传播和消失的渐变(wildml.com)

时间反向传播的简单介绍(machinelearningmastery.com)

反向传播,直觉(斯坦福CS231n)

深度学习

YN2深度学习指南(yerevann.com)

深度学习论文阅读路线图(github.com/floodsung)

Nutshell中的深度学习(nikhilbuduma.com)

深度学习教程(Quoc V.Le)

什么是深度学习?(machinelearningmastery.com)

人工智能,机器学习和深度学习之间有什么区别?(nvidia.com)

深度学习–简单介绍 (gluon.mxnet.io)

最优化和降维

数据降维减少的七种技术(knime.org)

主成分分析(斯坦福CS229)

Dropout:一种改善神经网络的简单方法(Hinton @ NIPS 2012)

如何训练你的深度神经网络?(rishy.github.io)

长短期记忆(LSTM)

长短期记忆网络的通俗介绍(machinelearningmastery.com)

了解LSTM 神经网络Networks(colah.github.io)

探索LSTM(echen.me)

任何人都可以学习用Python编写LSTM-RNN(iamtrask.github.io)

卷积神经网络(CNN)

卷积网络介绍(neuralnetworksanddeeplearning.com)

深度学习和卷积神经网络(medium.com/@ageitgey)

Conv Nets:模块化视角(colah.github.io)

了解卷积(colah.github.io)

递归神经网络(RNN)

递归神经网络教程(wildml.com)

注意和增强的递归神经网络(distill.pub)

递归神经网络的不合理有效性(karpathy.github.io)

深入了解递归神经网络(nikhilbuduma.com)

强化学习

强化学习初学者入门及其实施指南(analyticsvidhya.com)

强化学习教程(mst.edu)

学习强化学习(wildml.com)

深度强化学习:来自像素的乒乓球(karpathy.github.io)

生成对抗网络(GAN)

对抗机器学习简介(aaai18adversarial.github.io)

什么是生成性对抗网络?(nvidia.com)

滥用生成对抗网络制作8位像素艺术(medium.com/@ageitgey)

Generative Adversarial Networks简介(TensorFlow中的代码)(aylien.com)

初学者的生成对抗网络(oreilly.com)

多任务学习

深度神经网络中多任务学习概述(sebastianruder.com)

NLP

自然语言处理很有趣!(medium.com/@ageitgey)

自然语言处理神经网络模型入门(Yoav Goldberg)

自然语言处理权威指南(monkeylearn.com)

自然语言处理简介(algorithmia.com)

自然语言处理教程(vikparuchuri.com)

自然语言处理(NLP)来自Scratch(arxiv.org)

深度学习和NLP

深度学习适用于NLP(arxiv.org)

NLP的深度学习(没有魔法)(Richard Socher)

了解NLP的卷积神经网络(wildml.com)

深度学习、NLP、表示(colah.github.io)

最先进的NLP模型的新深度学习公式:嵌入、编码、参与、预测(explosion.ai)

使用Torch深度神经网络进行自然语言处理(nvidia.com)

使用Pytorch进行深度学习NLP(pytorich.org)

词向量

使用词袋模型解决电影评论分类(kaggle.com)

词嵌入介绍第一部分,第二部分,第三部分(sebastianruder.com)

词向量的惊人力量(acolyer.org)

word2vec参数学习解释(arxiv.org)

Word2Vec教程-?Skip-Gram模型,负抽样(mccormickml.com)

编码器-解码器

深度学习和NLP中的注意力机制和记忆力模型(wildml.com)

序列模型(tensorflow.org)

使用神经网络进行序列学习(NIPS 2014)

机器学习很有趣第五部分:深度学习的语言翻译和序列的魔力(medium.com/@ageitgey)

如何使用编码器-解码器LSTM来回显随机整数序列(machinelearningmastery.com)

tf-seq2seq(google.github.io)

Python

机器学习速成课程(google.com)

令人敬畏的机器学习(github.com/josephmisiti)

使用Python掌握机器学习的7个步骤(kdnuggets.com)

一个示例机器学习笔记(nbviewer.jupyter.org)

使用Python进行机器学习(tutorialspoint.com)

实战案例

如何在Python中从头开始实现感知器算法(machinelearningmastery.com)

在Python中使用Scratch实现神经网络(wildml.com)

使用11行代码在Python中实现神经网络(iamtrask.github.io)

使用Python实现你自己的k-Nearest Neighbor算法(kdnuggets.com)

来自Scatch的ML(github.com/eriklindernoren)

Python机器学习(第2版)代码库(github.com/rasbt)

Scipy和numpy

Scipy讲义(scipy-lectures.org)

Python Numpy教程(斯坦福CS231n)

Numpy和Scipy简介(UCSB CHE210D)

Python中的科学家速成课程(nbviewer.jupyter.org)

scikit学习

PyCon scikit-learn教程索引(nbviewer.jupyter.org)

scikit-learn分类算法(github.com/mmmayo13)

scikit-learn教程(scikit-learn.org)

简短的scikit-learn教程(github.com/mmmayo13)

Tensorflow

Tensorflow教程(tensorflow.org)

TensorFlow简介 - CPU与GPU(medium.com/@erikhallstrm)

TensorFlow(metaflow.fr)

Tensorflow中的RNN(wildml.com)

在TensorFlow中实现CNN进行文本分类(wildml.com)

如何使用TensorFlow运行文本摘要(surmenok.com)

PyTorch

PyTorch教程(pytorch.org)

PyTorch的简单介绍(gaurav.im)

教程:PyTorch中的深度学习(iamtrask.github.io)

PyTorch示例(github.com/jcjohnson)

PyTorch教程(github.com/MorvanZhou)

深度学习研究人员的PyTorch教程(github.com/yunjey)

数学

机器学习数学(ucsc.edu)

机器学习数学(UMIACS CMSC422)

线性代数

线性代数直观指南(betterexplained.com)

程序员对矩阵乘法的直觉(betterexplained.com)

了解Cross产品(betterexplained.com)

了解Dot产品(betterexplained.com)

用于机器学习的线性代数(布法罗大学CSE574)

用于深度学习的线性代数备忘单(medium.com)

线性代数评论与参考(斯坦福CS229)

概率论

用比率理解贝叶斯定理(betterexplained.com)

概率论入门(斯坦福CS229)

机器学习的概率论教程(斯坦福CS229)

概率论(布法罗大学CSE574)

机器学习的概率论(多伦多大学CSC411)

微积分

如何理解导数:商数规则,指数和对数(betterexplained.com)

如何理解导数:产品,动力和链条规则(betterexplained.com)

矢量微积分:了解渐变(betterexplained.com)

微分学(斯坦福CS224n)

微积分概述(readthedocs.io)

本文由阿里云云栖社区组织翻译。

文章原标题《over-200-of-the-best-machine-learning-nlp-and-python-tutorials-2018-edition》

作者:Robbie Allen

译者:虎说八道,审校:。 

机器学习 教程汇总 人工智能
上一篇:马云:技术如果不能让我们的生活更健康 则毫无意义 下一篇:用自己的数据构建一个简单的卷积神经网络
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

机器学习转化为生产力,警惕这4个常见陷阱!

几乎每个人都想在他们的业务中引入机器学习,但是这些人也遇到了一个大问题:让模型可持续发展十分困难,尤其是在云架构的基础上。medium上一位博主也指出了这个问题,并提出了将机器学习模型投入生产的4个常见陷阱。

大数据文摘 ·  1天前
500亿参数,支持103种语言:谷歌推出「全球文字翻译」模型

由于缺乏平行数据,小语种的翻译一直是一大难题。来自谷歌的研究者提出了一种能够翻译 103 种语言的大规模多语言神经机器翻译模型,在数据丰富和匮乏的语种翻译中都实现了显著的性能提升。

机器之心 ·  2天前
对于人工智能的恐惧及其5个解决方法

实施人工智能技术的IT领导人可能会感到一些恐惧,这有着充分的理由。人工智能在拥有数十年发展和应用历史的同时却有着奇怪的定位,但对于许多人来说,人工智能仍然是一种未来主义的感觉。

Kevin Casey ·  2天前
机器学习免费跑分神器:集成各大数据集,连接GitHub就能用

搞机器学习的小伙伴们,免不了要在各种数据集上,给AI模型跑分。现在,Papers with Code (那个以论文搜代码的神器) 团队,推出了自动跑分服务,名叫sotabench,以跑遍所有开源模型为己任。

栗子 鱼羊 ·  2天前
用AI实现动画角色的姿势迁移,Adobe等提出新型「木偶动画」

近日,Adobe 和康奈尔大学的研究人员提出一种基于学习的动画制作方法——基于卡通角色的少量图像样本就可生成新动画。

机器之心 ·  2天前
AI新贵登上胡润百富榜:“CV四小龙”三家创始人上榜

AI造福人类,也造富了一些创业者。最近公布的2019胡润百富榜就是窥探老板们身价的好机会。

郭一璞 ·  2天前
大数据为什么不够聪明?机器要如何走向强人工智能

大数据为什么不够聪明?比概率语言更强大的思考工具是什么?科幻电影中的强人工智能到底怎样实现?如何让智能机器像人一样思考?搞清楚因果关系才能拨云见日。

明日情报 ·  2天前
2019机器学习框架之争:与Tensorflow竞争白热化,进击的PyTorch赢在哪里?

2019年,机器学习框架之争进入了新阶段:PyTorch与TensorFlow成为最后两大玩家,PyTorch占据学术界领军地位,TensorFlow在工业界力量依然强大,两个框架都在向对方借鉴,但是都不太理想。

大数据文摘 ·  2天前
Copyright©2005-2019 51CTO.COM 版权所有 未经许可 请勿转载