用自己的数据构建一个简单的卷积神经网络

作者: 不靠谱的猫 2018-09-17 15:12:25

在本文中,我们将构建一个卷积神经网络,将对7种类型的数千个图像进行训练,即:鲜花,汽车,猫,马,人,自行车,狗,然后能够预测是否给定的图像是猫,狗或人。

 

该CNN实现使用自己的图像数据集涵盖以下主题

  • 加载和预处理自己的数据集
  • 在Keras设计和训练CNN模型
  • 绘制损失和准确度曲线
  • 评估模型和预测测试图像的输出类
  • 可视化CNN的中间层输出
  • 绘制结果的混淆矩阵

加载和预处理自己的数据集:

我们将使用的数据集包括从互联网收集并标记的7个类。Python代码如下;

  1. PATH = os.getcwd()   
  2. #Define data path  
  3. data_path = PATH + '/data'  
  4. data_dir_list = os.listdir(data_path)  
  5. data_dir_list 

输出:

  1. ['bike''cars''cats''dogs''flowers''horses''human'

可视化一些图像,我们可以看到图像是128x128像素,Python代码如下:

  1. #Visualize some images  
  2. image = X_train[1441,:].reshape((128,128))  
  3. plt.imshow(image)  
  4. plt.show() 

用自己的数据构建一个简单的卷积神经网络 

接下来,我们开始在Keras中设计和编译CNN模型,Python实现如下:

  1. #Initializing the input shape  
  2. input_shape = img_data[0].shape   
  3. #Design CNN sequential model  
  4. model = Sequential ([  
  5.  Convolution2D(32,3,3, border_mode = 'same', activation = 'relu', input_shape = input_shape),  
  6.  Convolution2D(32,3,3, activation = 'relu'),  
  7.  MaxPooling2D(pool_size = (2,2)),  
  8.  Dropout(0.5),   
  9.  Convolution2D(64,3,3, activation = 'relu'),  
  10.  MaxPooling2D(pool_size = (2,2)),  
  11.  Dropout(0.5),   
  12.  Flatten(),  
  13.  Dense(64, activation = 'relu'),  
  14.  Dropout(0.5),  
  15.  Dense(num_classes, activation = 'softmax' 
  16. ])   
  17. #Compiling the model  
  18. model.compile(  
  19.  loss = 'categorical_crossentropy',   
  20.  optimizer = 'adadelta' 
  21.  metrics = ['accuracy']) 

在拟合模型之后,我们可以在整个迭代过程中可视化训练和验证。

  1. ist = model.fit (X_train, y_train,  
  2.  batch_size = 16,  
  3.  nb_epoch = num_epoch,  
  4.  verbose=1,  
  5.  validation_data = (X_test, y_test)  
  6.  ) 



我们现在可以使用我们的模型使用以下代码预测新图像的新类:

  1. # Predicting the test image  
  2. print((model.predict(test_image)))  
  3. print('Image class:', model.predict_classes(test_image)) 

正如我们在下面看到的,我们的模型正确地将图像分类为class [0] - bike。


  1. [[3.6560327e-01 2.7960737e-06 1.2630007e-03 2.9311934e-01 1.6894026e-02  
  2. 3.0998811e-01 1.3129448e-02]]  
  3. Image class: [0] 

这是一个混淆矩阵,没有归一化

我们现在可以保存模型和权重,以便在实际应用程序中实现。 

人工智能 神经网络 编程语言
上一篇:马云:技术如果不能让我们的生活更健康 则毫无意义 下一篇:人工智能只会让人失业吗?麦肯锡的调查分析给出了不一样的答案!
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

超过Google,微信AI在NLP领域又获一项世界第一

微信AI,NLP领域又获一项世界第一,这次是在机器阅读理解方面。

乾明 ·  2天前
AI如何改善采矿行业现状?

人工智能的引入,有望将采矿业转化成一个更安全、利润空间更大且更为环保的行业。

佚名 ·  2天前
大小仅1MB!超轻量级的人脸识别模型火爆Github

近日,用户Linzaer在Github上开源了一款适用于边缘计算设备、移动端设备以及 PC 的超轻量级通用人脸检测模型,该模型文件大小仅1MB,一经开源就霸榜Github Trending榜单。

佚名 ·  2天前
大数据和人工智能如何协同工作

人工智能和机器学习如何帮助组织从大数据中获得更好的业务见解?需要了解人工智能和大数据分析的下一步发展。大数据技术并不像几年前那样广受关注,但这并不意味着大数据技术没有得到发展。如果说有什么不同的话,那就是大数据的规模正在变得越来越大。

Kevin Casey ·  3天前
麻省理工学院开发出组装机器人:未来可建造太空殖民地

麻省理工学院博士生本杰明·杰内特(Benjamin Jenett)和原子中心的尼尔·格申费尔德教授(Neil Gershenfeld)在《电气电子工程师学会机器人与自动化快报》科学期刊上发表报告称,开发出一种组装机器人原型,它可以用很小的零件制成大型结构。

技术力量 ·  4天前
刷脸取件被小学生“破解”!丰巢紧急下线 精选

近日,#小学生发现刷脸取件bug#的话题引发关注!这是真的吗?都市快报《好奇实验室》进行了验证。

好奇实验室 ·  4天前
深度学习/计算机视觉常见的8个错误总结及避坑指南

人类并不是完美的,我们经常在编写软件的时候犯错误。有时这些错误很容易找到:你的代码根本不工作,你的应用程序会崩溃。但有些 bug 是隐藏的,很难发现,这使它们更加危险。

skura ·  4天前
AI艺术日渐繁荣,未来何去何从? 精选

利用人工智能创作而成的画作近年来越来越受瞩目,有的作品甚至能在知名拍卖行拍得高价。但这类作品仍有不少问题需要解答,比如它的作者是开发出算法的程序员还是计算机呢?AI艺术的市场未来将走向何方呢?

网易智能 ·  4天前
Copyright©2005-2019 51CTO.COM 版权所有 未经许可 请勿转载