网购数据下的智能门锁“剁手”攻略

作者: tecdat 2018-09-03 16:20:27

早在1995年比尔·盖茨就在《未来之路》里说过:未来没有配套智能家居的房子,就是毛坯房。现在人们生活越来越便捷,人们也更加倾向于智能化家居,当你还在纠结“人工智能”安利值不值得吃,最近不少朋友家里又出现智能门锁,相比传统门锁来说,究竟能有多智能?

tecdat研究人员对各大电商平台海量用户的评价数据进行分析,得出智能门锁剁手攻略。

网购数据下的智能门锁“剁手”攻略

语义透镜分析顾客的关注点和满意度

我们对于评价数据进行LDA建模,就是从语料库中挖掘出不同主题并进行分析,换言之,LDA提供了一种较为方便地量化研究主题的机器学习方法。

我们使用***似然估计进行***化主题个数的选取。当主题个数定为20的时候,似然估计数***,即留言板数据分为20个主题的可能性比较大。将模型生成的20个主题中的高频词取出。

网购数据下的智能门锁“剁手”攻略

根据各个主题的高频关键词,大概可以将顾客关注点分成5个部分:商家品牌、价格质量、客服师傅、使用便捷性和包装物流。从上图,我们发现用户关注的点主要集中在客服对商品问题的耐心解答,师傅对门锁安装的指导以及包装和物流上。同时我们也发现不少顾客的评论反映出智能门锁的便捷性(e.g.不用带钥匙)和先进(e.g.指纹识别度高)。同时我们没有发现安全性相关的高频词汇。

顾客抱怨分析:质量、客服服务和物流

接下来,我们对不同价格和主题的顾客抱怨率进行比较。 

网购数据下的智能门锁“剁手”攻略

从价格方面我们发现价格低于2000的智能门锁购买量最多,同时抱怨率也较高,根据关注点来看,顾客抱怨点主要集中在商品质量和客服的耐心程度。购买量位于第二的价格是高于4000的区间,整体抱怨率***。购买量位于第三的是2000-3000区间,该区间顾客抱怨点主要集中在商家品牌与物流。***是3000-4000区间,该区间顾客抱怨点主要集中在价格质量与物流。因此,可以也反映顾客对智能门锁价格有一定的心理预期,主要抱怨点在质量、客服服务和物流上。

自营与非自营的价格与满意度比较

网购数据下的智能门锁“剁手”攻略

从左图可以看出自营和非自营商品在顾客满意度上相差不大,非自营商品的满意度要略高于自营商品。同时可以看到大于4000区间的顾客满意度***,且都是非自营商品。从右图中,我们可以看到满意度关于价格的回归预测结果。图中红线表示的是自营商品,在3000以下的区间,价格越高,满意度反而下降,高于3000的区间中,价格越高,满意度越高。在非自营商品中,3000以下的价格区间中,价格和满意度关系不明显,高于3000的价格区间中,价格越高,满意度越高。

从前文中,我们发现价格低于3000的商品抱怨率***的点在于便捷和使用高效,因此给人的感觉性价高,因此满意度较高,而价格接近3000时,顾客对客服、物流、质量等预期更高,因此容易成为抱怨的重灾区。当价格接近和高于4000时,商品的品牌、质量往往又得到保证,因此满意度又上升。

人工智能 智能门锁 机器学习
上一篇:警惕数字化转型三大陷阱,英特尔赋能平安医疗科技“端到端”的AI能力 下一篇:CatBoost:比XGBoost更优秀的GBDT算法
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

超过Google,微信AI在NLP领域又获一项世界第一

微信AI,NLP领域又获一项世界第一,这次是在机器阅读理解方面。

乾明 ·  2天前
AI如何改善采矿行业现状?

人工智能的引入,有望将采矿业转化成一个更安全、利润空间更大且更为环保的行业。

佚名 ·  2天前
大小仅1MB!超轻量级的人脸识别模型火爆Github

近日,用户Linzaer在Github上开源了一款适用于边缘计算设备、移动端设备以及 PC 的超轻量级通用人脸检测模型,该模型文件大小仅1MB,一经开源就霸榜Github Trending榜单。

佚名 ·  2天前
大数据和人工智能如何协同工作

人工智能和机器学习如何帮助组织从大数据中获得更好的业务见解?需要了解人工智能和大数据分析的下一步发展。大数据技术并不像几年前那样广受关注,但这并不意味着大数据技术没有得到发展。如果说有什么不同的话,那就是大数据的规模正在变得越来越大。

Kevin Casey ·  3天前
麻省理工学院开发出组装机器人:未来可建造太空殖民地

麻省理工学院博士生本杰明·杰内特(Benjamin Jenett)和原子中心的尼尔·格申费尔德教授(Neil Gershenfeld)在《电气电子工程师学会机器人与自动化快报》科学期刊上发表报告称,开发出一种组装机器人原型,它可以用很小的零件制成大型结构。

技术力量 ·  3天前
刷脸取件被小学生“破解”!丰巢紧急下线 精选

近日,#小学生发现刷脸取件bug#的话题引发关注!这是真的吗?都市快报《好奇实验室》进行了验证。

好奇实验室 ·  3天前
深度学习/计算机视觉常见的8个错误总结及避坑指南

人类并不是完美的,我们经常在编写软件的时候犯错误。有时这些错误很容易找到:你的代码根本不工作,你的应用程序会崩溃。但有些 bug 是隐藏的,很难发现,这使它们更加危险。

skura ·  3天前
AI艺术日渐繁荣,未来何去何从? 精选

利用人工智能创作而成的画作近年来越来越受瞩目,有的作品甚至能在知名拍卖行拍得高价。但这类作品仍有不少问题需要解答,比如它的作者是开发出算法的程序员还是计算机呢?AI艺术的市场未来将走向何方呢?

网易智能 ·  3天前
Copyright©2005-2019 51CTO.COM 版权所有 未经许可 请勿转载