大数据和人工智能领域实用且不能错过的10大网站

作者: 佚名 2018-08-16 21:06:27

随着AI,大数据这些技术的快速发展,与此有关的知识也普及开来。如何在众多网站中寻找最有价值的信息,如何在最短的时间内获得最新的技术资讯?笔者在这里整理出大数据和人工智能领域最实用,质量最高的10大技术网站信息,既可以用于丰富技术知识,也可以用于学术研究,仅供参考。

1. Google AI Blog

  • 名称:Google AI Blog
  • 链接:research.googleblog.com
  • 内容:AI
  • 例文:SLING: A Natural Language Frame Semantic Parser
  • 更新速度:未知
  • 科学上网(此处是指需要连接VPN,下同):Yes
  • 竞争强度:高

笔者有话说:该网站发布的文章为谷歌的最新研究成果,极具权威性和学术性。根据笔者经验,该网站的文章一出,就会受到各大微信公众号的疯抢,不到24个小时便能搜索到译文,由此可以看出该网站的水准的确很高。

2. Towards Data Science

  • 名称:Towards Data Science
  • 链接:towardsdatascience.com/
  • 内容:Data Science
  • 例文:Building an Altcoin Market Sentiment Monitor
  • 更新速度:平均每日三至四篇
  • 科学上网:Yes
  • 竞争强度:中等

笔者有话说:这是一个内容非常丰富的数据科学学习网站。大多数的文章都是以案例展开,并附有代码和配图,文字严谨且具有良好的逻辑性,手把手教读者如何去操作,对于数据科学的初学者非常友好。就选文渠道而言,它的更新速度很快,因此关注该渠道可以获得源源不断的优质文章,可选择的余地非常大,但是要注意去甄别文章的内容,并不是所有文章都那么出色。

3. Analytics Vidhya

  • 名称:Analytics Vidhya
  • 链接:www.analyticsvidhya.com/blog/
  • 内容:AI & Data Science
  • 例文:The Essential NLP Guide for data scientists (with codes for top 10 common NLP tasks)
  • 更新速度:平均每周一篇
  • 科学上网:No
  • 竞争强度:低

笔者有话说:与Towards Data Science一样,这也是一个优秀的数据科学教育网站。在它的blog里面,大多数的文章以教程的方式展开,并附有代码。除此之外,还有一些纯干货型文章,例如:The Essential NLP Guide for data scientists (with codes for top 10 common NLP tasks)。

4. Kdnuggets

  • 名称:Kdnuggets
  • 链接:www.kdnuggets.com
  • 内容:Computer Science
  • 例文:PySpark SQL Cheat Sheet: Big Data in Python
  • 更新速度:优质选文成批发放,两至三周一更新
  • 科学上网:No
  • 竞争强度:高

笔者有话说:这是一个内容覆盖非常广泛的网站,不论是就职干货还是技术难题,它总会有相关的文章。该网站的文章质量非常高,因此是各大公众号的“兵家必争之地”。建议多挂住网站左下角的“Most Popular”和“Most Shared”里的文章,快捷高效地获取优质文章。

5. Pete Warden’s Blog

  • 名称:Pete Warden’s Blog
  • 链接:https://petewarden.com/
  • 内容:AI
  • 例文:How do CNNs Deal with Position Differences?
  • 更新速度:平均两月一篇
  • 科学上网:No
  • 竞争强度:高

笔者有话说:这是技术牛人Pete Warden的个人博客。他的文章更新较慢,但是内容严谨且具权威性。文章大都附有图片和代码进行解释。该网站是一个很好的研究性信息来源,和Google Research Group一样,文章一出,非常容易遭到疯抢。另外,文章的内容比较艰深,同时篇幅长,比较适合学术研究使用。

6. Revolution Analytics

  • 名称:Revolution Analytics
  • 链接:https://blog.revolutionanalytics.com/
  • 内容:News & Learning Resource
  • 例文:Compare outlier detection methods with the OutliersO3 package
  • 更新速度:优质文章成批发放,平均每月一次
  • 科学上网:No
  • 竞争强度:低

笔者有话说:这是一个杂文网站,文章种类繁多。平时会发布一些结构较小的文章,而每个月都会出现一次Roundup。这个Roundup通常分两个部分: 新闻和学习资源。建议主要关注这个Roundup里的学习资源,有许多技术性的文章质量很高。

7. DZONE

  • 名称:DZONE
  • 链接:https://dzone.com/
  • 内容:各种计算机相关信息
  • 例文:NLP in Python
  • 更新速度:平均每日每种类别都会更新一到两篇文章
  • 科学上网:No
  • 竞争强度:低

笔者有话说:笔者在“内容”一栏填写了“各种计算机相关信息”,是因为这个网站的内容对于计算机领域的知识覆盖简直让人惊讶。不论是AI、云计算、数据安全还是计算机性能、IoT和网站设计,这网站都有相关的文章,并且分好了类别。该网站的更新速度很快,而且每次都会对各个类别的文章进行大量更新。但是,对于文章质量来讲,还需要认真甄别。

8. Codementor

  • 名称:Codementor
  • 链接:https://www.codementor.io/community/topic/data-science
  • 内容:各种附代码技术类干货
  • 例文:Introducing pydbgen: A random dataframe/database table generator
  • 更新速度:每月一篇
  • 科学上网:No
  • 竞争强度:低

笔者有话说:这是一个对于文章管理不是特别好的网站,它的文章没有分类,因此很难摸清楚它发文章的具体套路。根据笔者经验,这个网站所发的文章基本都是技术性文章,帮助解决各种技术性问题的。文章大都附有代码,因此比较干货。

9. Data+Science

  • 名称:Data+Science
  • 链接:https://www.dataplusscience.com/insights.html
  • 内容:数据可视化
  • 例文:Finding the Nearest Ocean Coast or any Nearest Point on a Map in Tableau
  • 更新速度:每月两篇
  • 科学上网:No
  • 竞争强度:低

笔者有话说:这个网站的主题是数据可视化。因此,它的所有文章都是数据可视化案例,其中比较多见的就是Tableau的case。这个网站文章的最大特点就是其运用到极致的版面设计美学(笔者有点夸张(#^.^#))。文章的排版、配图还有操作解说都安排得整洁美观,对于读者来说也格外赏心悦目,文章的内容也是干货满满。

10. Edwin Chen’s Blog

  • 名称:Edwin Chen’s Blog
  • 链接:https://blog.echen.me/
  • 内容:AI
  • 例文:Exploring LSTMs
  • 更新速度:未知
  • 科学上网:No
  • 竞争强度:高

笔者有话说:关注这个Blog,很大程度上是因为一篇爆热文:Exploring LSTMs。这篇文章在刚刚发出来以后,被各大公众号争相翻译和转发。笔者个人对于这个技术大牛的网站就八个字的评价:“不鸣则已,一鸣惊人”。它的文章质量非常高,同时讨论的也是非常前沿的话题,因此称之为“篇篇热门”并不为过。但是它的缺点也非常明显,大牛更文更得非常慢,文章之间隔了几个月是常有的事。另外该网站发布的文章篇幅较长,内容艰深,对于读者的英文水平和AI专业知识要求非常高。

大数据 人工智能 网站 数据科学
上一篇:黑科技界的“魏璎珞” 察言观色有一手 下一篇:海外专家关于人工智能发展前景的四大骇人预测
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

AI行业寒潮下,智能物流机器人产业迎来“风口”

“人工智能,前景很好,但‘钱’景不好 ” 、“2018年,人工智能的进展就是没有进展”、“2019年的AI行业已如石墨烯一样,尽显疲态”……一篇《投资人逃离人工智能》文章又给人工智能行业泼了一身冷水。人工智能融资难、“寒冬论”再一次戳痛每个人工智能从业者的心,激起大众的焦虑情绪。

AI报道 ·  18h前
人工智能应用在智慧社区五大场景

物联网、云计算、大数据、人工智能正逐步从概念走向应用。越来越多的传统产业也开始探索和创新,积极拥抱互联网和新技术。未来,人工智能技术可能会颠覆社区管理。

有熊 ·  19h前
基于PyTorch的CV模型框架,北大学生出品TorchCV

在机器学习带来的所有颠覆性技术中,计算机视觉领域吸引了业内人士和学术界最大的关注。

张倩、泽南 ·  20h前
高位截瘫患者重新行走:靠意念指挥外骨骼,法国脑机接口新突破

依靠介入头部的 2 个传感器,法国里昂的一名瘫痪男子 Thibault 实现了操控外骨骼装备来助力行走。

孙滔 ·  1天前
2008 年预测 2020 年生活方式:基本都实现了

美国皮尤研究中心曾在 2008 年预测 2020 年的生活方式,目前来看,该研究的预测基本已经实现。而对于未来 10 年,也就是 2030 年左右人们的生活,在 2017 年底的世界经济论坛上,800 多名信息和通讯技术领域的技术高管和专家给出了如下预测。

佚名 ·  1天前
机器学习的正则化是什么意思?

正则化的好处是当特征很多时,每一个特征都会对预测y贡献一份合适的力量;所以说,使用正则化的目的就是为了防止过拟合。

佚名 ·  1天前
为什么我的CV模型不好用?没想到原因竟如此简单……

机器学习专家 Adam Geitgey 近日发布了一篇文章探讨了这一简单却又让很多人头痛的问题,并分享了他为解决这一问题编写的自动图像旋转程序。

机器之心 ·  1天前
中文自动转SQL,准确率高达92%,这位Kaggle大师刷新世界纪录

首届中文NL2SQL挑战赛上,又一项超越国外水平的NLP研究成果诞生了。在NL2SQL这项任务上,比赛中的最佳成绩达到了92.19%的准确率,超过英文NL2SQL数据集WikiSQL目前完全匹配精度86.0%,执行匹配精度91.8%的最高成绩。

郭一璞 ·  1天前
Copyright©2005-2019 51CTO.COM 版权所有 未经许可 请勿转载