人工智能主要分为哪几个研究阶段,未来的发展方向是什么

作者: 多智时代 2018-08-09 17:45:58

人工智能一直处于计算机技术的前沿,人工智能研究的理论和发现在很大程度上将决定计算机技术的发展方向。现在,已经有很多人工智能研究的成果进入人们的日常生活。从目前的一些前瞻性研究可以看出,未来人工智能可能会向以下几个方面发展:模糊处理、并行化、神经网络和机器情感。

人工智能主要分为哪几个研究阶段,未来的发展方向是什么

人工智能产生于 20 世纪 50 年代,是计算机研究和应用到一定阶段的产物,是社会生产发展的要求和必然结果,也是人类认识自身的重要标志。人工智能也称机器智能,它是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统的角度出发,人工智能是研究如何制造出智能机器或智能系统来模拟人类智能活动的能力,以延伸人们智能的科学。

人工智能主要分为哪几个研究阶段,未来的发展方向是什么

一、人工智能的研究阶段

从50年代开始,人工智能的研究经历了以下几个阶段:

第一阶段:50年代人工智能的兴起和冷落。人工智能概念首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题、求解程序、LISTP 表处理语言等。但由于消解法推理能力的有限以及机器翻译等的失败,使人工智能走入了低谷。这一阶段的特点是:重视问题求解的方法,忽视知识重要性。

第二阶段:60 年代末到 70 年代,专家系统出现,使人工智能研究出现新高潮。DENDRAL化学质谱分析系统、MYCIN疾病诊断和治疗系统、PROSPECTIOR探矿系统、Hearsay-Ⅱ语音处理系统等专家系统的研究和开发,将人工智能引向了实用化。并且,1969 年成立了国际人工智能联合会议。

第三阶段:80年代,随着第五代计算机的研制,人工智能得到了很大发展。日本1982年开始了”第五代计算机研制计划”,即“知识信息处理计算机系统KIPS”,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。

第四阶段:80年代末,神经网络飞速发展。1987年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。

第五阶段:90年代,人工智能出现新的研究高潮。由于网络技术特别是国际互连网的技术发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,使人工智能更面向实用。另外,由于Hopfield多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。人工智能已深人到社会生活的各个领域。

二、人工智能的研究热点和应用

现在,人工智能已逐渐形成了诸如专家系统、机器学习、模式识别、自然语言理解、机器人学、博弈、人工神经网络等多个研究领域。而目前人工智能研究的热点和应用包含以下几个方面:

1、智能接口

智能接口技术是研究如何使人们能够方便自然地与计算机交流。为了实现这一目标,要求计算机能够看懂文字、听懂语言、说话表达,甚至能够进行不同语言之间的翻译,而这些功能的实现又依赖于知识表示方法的研究。因此,智能接口技术的研究既有巨大的应用价值,又有基础的理论意义。目前,智能接口技术已经取得了显著成果,文字识别、语音识别、语音合成、图像识别、机器翻译以及自然语言理解等技术已经开始实用化。

2、数据挖掘

就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据挖掘和知识发现的研究 目前已经形成了三根强大的技术支柱:数据库、人工智能和数理统计。主要研究内容包括基础理论、发现算法、数据仓库、可视化技术、定性定量互换模型、知识表示方法、发现知识的维护和再利用、半结构化和非结构化数据中的知识发现以及网上数据挖掘等。

3、主体及多主体系统

主体是具有信念、愿望、意图、能力、选择等心智状态的实体,比对象的粒度更大,智能性更高,而且具有一定自主性。主体试图自主地、独立地完成任务,而且可以和环境交互,与其他主体通信,通过规划达到目标。多主体系统主要研究在逻辑上或物理上分离的多个主体之间进行协调智能行为,最终实现问题求解。多主体系统试图用主体来模拟人的理性行为,主要应用在对现实世界和社会的模拟、机器人以及智能机械等领域。目前,对主体和多主体系统的研究主要集中在主体和多主体理论、主体的体系结构和组织、主体语言、主体之间的协作和协调、通信和交互技术、多主体学习以及多主体系统。

人工智能主要分为哪几个研究阶段,未来的发展方向是什么

三、人工智能的发展方向

技术的发展总是超乎人们的想象,要准确地预测人工智能的未来是不可能的。但是,从目前的一些前瞻性研究可以看出,未来人工智能可能会向以下几个方面发展:模糊处理、并行化、神经网络和机器情感。

目前,人工智能的推理功能已获突破,学习及联想功能正在研究之中,下一步就是模仿人类右脑的模糊处理功能和整个大脑的并行化处理功能。人工神经网络是未来人工智能应用的新领域,未来智能计算机的构成,可能就是冯•诺依曼型主机与外围的智能人工神经网络的结合。研究表明:情感是智能的一部分,而不是与智能相分离的,因此,人工智能领域的下一个突破可能在于赋予计算机情感能力。情感能力对于计算机与人的自然交往至关重要。

人工智能一直处于计算机技术的前沿,人工智能研究的理论和发现在很大程度上将决定计算机技术的发展方向。现在,已经有很多人工智能研究的成果进入人们的日常生活。将来,人工智能技术的发展将会给人们的生活、工作和教育等带来更大的影响。

人工智能开创了从根本上解放人类智力劳动的途径,在实践上和理论上都具有重要意义。理论上,它使知识的范畴进一步扩展;实践上,它促进了各领域的飞速发展。随着研究和应用的不断深入,如今人工智能有了蓬勃的发展,专家系统、智能决策、智能机器人、自然语言理解以及机器学习、机器发现、机器证明等方面的成就均显示了人工智能的巨大威力。用机器替代人的大脑解放在很大程度上无疑就是脑力劳动的机械化、自动化,机器定理证明和推理自动化无疑抓住了这一信息智能革命的关键,在为实现整个人类脑力劳动的机械化、自动化的进程中找到了一个突破口,进而也为社会生产力的进步奠定了坚实的技术基础。

在不久的将来,多智时代一定会彻底走入我们的生活,有兴趣入行未来前沿产业的朋友,可以留心多智时代,及时获取人工智能、大数据、云计算和物联网的前沿资讯和基础知识,让我们一起携手,引领人工智能的未来!

人工智能 机器学习 机器人
上一篇:8年了,谷歌重返中国的传言到底靠不靠谱? 下一篇:人工智能能否复制人脑引争论 美媒:目前AI仍存在局限性
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

AI行业寒潮下,智能物流机器人产业迎来“风口”

“人工智能,前景很好,但‘钱’景不好 ” 、“2018年,人工智能的进展就是没有进展”、“2019年的AI行业已如石墨烯一样,尽显疲态”……一篇《投资人逃离人工智能》文章又给人工智能行业泼了一身冷水。人工智能融资难、“寒冬论”再一次戳痛每个人工智能从业者的心,激起大众的焦虑情绪。

AI报道 ·  18h前
人工智能应用在智慧社区五大场景

物联网、云计算、大数据、人工智能正逐步从概念走向应用。越来越多的传统产业也开始探索和创新,积极拥抱互联网和新技术。未来,人工智能技术可能会颠覆社区管理。

有熊 ·  18h前
基于PyTorch的CV模型框架,北大学生出品TorchCV

在机器学习带来的所有颠覆性技术中,计算机视觉领域吸引了业内人士和学术界最大的关注。

张倩、泽南 ·  19h前
高位截瘫患者重新行走:靠意念指挥外骨骼,法国脑机接口新突破

依靠介入头部的 2 个传感器,法国里昂的一名瘫痪男子 Thibault 实现了操控外骨骼装备来助力行走。

孙滔 ·  23h前
2008 年预测 2020 年生活方式:基本都实现了

美国皮尤研究中心曾在 2008 年预测 2020 年的生活方式,目前来看,该研究的预测基本已经实现。而对于未来 10 年,也就是 2030 年左右人们的生活,在 2017 年底的世界经济论坛上,800 多名信息和通讯技术领域的技术高管和专家给出了如下预测。

佚名 ·  23h前
机器学习的正则化是什么意思?

正则化的好处是当特征很多时,每一个特征都会对预测y贡献一份合适的力量;所以说,使用正则化的目的就是为了防止过拟合。

佚名 ·  23h前
为什么我的CV模型不好用?没想到原因竟如此简单……

机器学习专家 Adam Geitgey 近日发布了一篇文章探讨了这一简单却又让很多人头痛的问题,并分享了他为解决这一问题编写的自动图像旋转程序。

机器之心 ·  1天前
中文自动转SQL,准确率高达92%,这位Kaggle大师刷新世界纪录

首届中文NL2SQL挑战赛上,又一项超越国外水平的NLP研究成果诞生了。在NL2SQL这项任务上,比赛中的最佳成绩达到了92.19%的准确率,超过英文NL2SQL数据集WikiSQL目前完全匹配精度86.0%,执行匹配精度91.8%的最高成绩。

郭一璞 ·  1天前
Copyright©2005-2019 51CTO.COM 版权所有 未经许可 请勿转载