如何利用DeepFM算法设计推荐系统

编译作者: 汪昊 2018-08-08 13:30:59

如何利用DeepFM算法设计推荐系统

【51CTO.com快译】经过了十几年的发展,推荐系统在互联网行业已经变得越来越流行。从早年没有一个合适的产品形态,到如今在今日头条和抖音等商业产品中发挥重要作用,推荐系统已经越来越受到互联网公司和研究界学者的重视。

早年的推荐算法主要是各种单模型,例如逻辑回归、协同过滤、矩阵分解等等。后来推荐算法演化成了混合模型,例如 GBDT + LR , GBDT + FM 等。而随着深度学习的崛起,深度神经网络越来越深刻地影响了推荐系统领域的发展。

Huifeng Guo 等中国国内学者在 IJCAI 2017 发表了一篇题为《DeepFM: A Factorization-Machine based Neural Network for CTR Prediction 》的论文,讲解了如何将 FM 和深度学习模型进行融合之后进行推荐的算法。

DeepFM 主要有以下三个优点:

  1. DeepFM 可以对低阶特征交互和高阶特征交互进行建模,不需要进行特征工程。
  2. DeepFM 可以高效的进行训练,因为模型宽的部分和深的部分,不仅共享输入,也共享嵌入式向量。
  3. 实验数据表明 DeepFM 可以在点击率预估问题上取得优秀的效果。

DeepFM 的输入数据为点击率预估常见的 (X, y) 元组,其中 X 是表示用户和物品的特征向量,可能包括非数值数据,y 是点击数据标签,y = 1 表示用户点击了物品,y = 0 表示用户没有点击物品。

DeepFM 的预测函数如下: , 其实是利用 sigmoid 函数对基于 FM 的预测和基于 DNN 的预测进行了融合。算法模型中的 FM 部分算法架构如下图所示:

DNN 部分的算法架构如下图所示:

在混合模型中,FM 和 DNN 共享同一个特征嵌入层。嵌入层的结构如下图所示:

嵌入层得到的向量记为: ,  该向量参与到后续的DNN计算中: ,以及  。

作者随后在测试数据集合上对近年来的几种不同的点击率预估算法进行了测评,选择的测评标准包括 AUC 和 Log-loss ,测评结果如下图所示:

与 DeepFM 相比,其他几种点击率预估算法有以下缺点:

  1. FNN : FNN 是一个由 FM 初始化的前向神经网络。FM 预训练策略有如下两个问题:1). 嵌入层参数受 FM 影响较大 2). FM 预训练对算法效率有影响。另外,FM 只包含了高阶特征组合。
  2. PNN : PNN 及其变种 IPNN 和 OPNN 忽略了低阶特征的组合。
  3. 宽深网络:宽身网络的 FM 部分需要人工处理特征工程。

DeepFM 设计思路简单,源于 2016 年 Google 的宽深网络方法但是效果出众。自推荐系统诞生以来,人们便设计了各种不同的模型融合方法。从修改主题模型的 Collaborative Topic Regression ,到基于 blending 的 GBDT + LR 再到后面的宽深网络方法, 给我们设计算法提供了不同的思路。算法本身是一个既要考虑模型,又要考虑数据和参数的学科,DeepFM 在如何设计模型层面给我们展示了很好的范例。

原文标题:DeepFM: A Factorization-Machine based Neural Network for CTR Prediction,作者:Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, Xiuqiang He 

汪昊,恒昌利通资深架构师,美国犹他大学硕士,在百度,新浪,网易,豆瓣等公司有多年的研发和技术管理经验,擅长机器学习,大数据,推荐系统,社交网络分析,计算机图形学,可视化等技术。在 TVCG 和 ASONAM 等国际会议和期刊发表论文 8 篇。本科毕业论文获国际会议 IEEE SMI 2008 ***论文奖。

【51CTO译稿,合作站点转载请注明原文译者和出处为51CTO.com】

推荐系统 DeepFM 算法
上一篇:人能识别“假笑”,那么机器人呢? 下一篇:如何使用Android Things和TensorFlow在物联网上应用机器学习
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

欺诈不可怕,机器学习算法分分钟拿下! 精选

根据一项调查,采用基于AI的解决方案的防欺诈专家中有80%认为AI对打击欺诈者有效。但是,仍然存在的问题是弄清楚哪种机器学习算法可以有效地检测未知的欺诈模式。监督学习和无监督学习算法哪一个更有效?

读芯术 ·  4天前
2月10日返工潮即将到来,北京开始部署「快速AI体温检测仪」

AI 技术正在帮助大量即将返回工作岗位的人们,让接触新冠病毒的风险不断降低。

Synced ·  2020-02-07 16:05:13
人工智能可以像人类一样学习吗?

1956年的夏天,一场在美国达特茅斯(Dartmouth)大学召开的学术会议,“人工智能”(artificialintelligence)第一次被提出,多年以后该会议也被认定为全球人工智能研究的起点。2016年的春天,一场AlphaGo与世界优秀围棋高手李世石的人机世纪对战,人工智能新浪潮来临。

读芯术 ·  2020-01-09 17:03:29
机器学习入门必读:6种简单实用算法及学习曲线

大部分的机器学习算法主要用来解决两类问题——分类问题和回归问题。在本文当中,我们介绍一些简单但经典实用的传统机器学习算法,让大家对机器学习算法有一个基本的感性认识。

华章科技 ·  2020-01-09 10:45:17
AR眼镜,机器学习领域的杀手级应用? 精选

完美的AR眼镜需要把对话式AI、计算机视觉和其他复杂系统结合起来,这些系统必须能够像眼镜那样小巧,便于操作。低功耗AI不可或缺,这将确保合理的电池寿命,从而使得用户拥有较长的可以佩戴和使用眼镜的时间。

周蕾 ·  2019-12-23 14:28:43
如何将机器学习与敏感性分析相结合来制定业务策略?

数不清的企业通常使用机器学习(ML)来辅助决策。但是,在大多数情况下,机器学习系统做出的预测和业务决策仍然需要人类用户的直觉来做出判断。

CDA数据分析师 ·  2019-12-17 16:14:24
5个可以让你的模型在边缘设备上高效推理的算法 精选

深度学习模型这么大,这么慢,如何在边缘设备上部署使用?这里有5个算法,你可以试试。

AI公园 ·  2019-12-16 15:28:00
2020年,AI算法市场能火起来吗?

回头看看这一年的AI发展,或许八个字的总结十分合用“虚火下降,实火上升”。或许很多朋友觉得身边讨论AI的热度在下降。确实如此,今年从投资并购的发生数量、媒体对AI的讨论,以及社交媒体上AI的热度来看,都较比前两年大幅降温。

风辞远 ·  2019-11-28 15:31:37
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载