光速运算实现突破,AI训练的成本难题或将得以解决

作者: 佚名 2018-07-29 15:27:04

图片来源:视觉中国
图片来源:视觉中国

1956年,“人工智能”这一概念被首次提出,自此以后,历经六十多年沉浮至今,人工智能一共经历了两次浪潮。

第一次浪潮基于“if- then”结构,建立在人工设定的形式逻辑基础上;第二次浪潮则是我们现在比较常见的,基于大数据驱动,借助统计学方法、模拟神经网络等来实现计算机的自主学习。

从这两波浪潮的转变中,我们发现,AI的本质就是计算,算法控制着数据的流动并实现所谓的“智能”。计算,无疑是人工智能发展中最为重要的一环。而现在,人工智能的计算走到哪里了呢?

光速运算,解决AI训练的成本难题

近日,OpenAI对不同时期最大型的AI试验所消耗的计算量进行了调查分析。结果发现,跟6年前相比,AI训练所需的计算量整整增长了30倍,相当于每3.5月就翻番。

光速运算实现突破,AI训练的成本难题或将得以解决
图为AI训练所需的计算量(单位千亿次浮点运算)图片来源:OpenAI分析报告

计算量不断增加,其实并不是一件坏事,因为这代表着AI 的能力也在与日俱增,但是,计算力的提升也让AI的训练成本不断增加。拿目前大家都知道的AlphaGo Zero举例,这是目前最大规模的AI实验,其成本可能是1000万美元。如果试验计算量持续增长,其成本每1.1-1.4年就会增加一个数量级。按照这个趋势,在5-6年的时间内,这个实验的成本将达到2000万美元。

除非存在有一些非常强大的AI技术能带来大规模的经济回报,否则,要想维持AI的计算趋势,保证下一个“阿尔法狗”能被“喂养”出来,经济产出就要以每年一个数量级的速度来增长。这还只是就目前的情况而言,谁也无法保证AI计算趋势在未来不会上涨得更快。

所以,目前摆在企业和政府面前的难题是,如何加快AI运算速度,满足人工智能研究中日益增长的计算量。

谈起速度,目前宇宙中最快的速度是光速,光的传播速度是 30 万公里每秒,如果可以让AI的深度神经网络中的信号以光速传播,运算速度是否也能相应提高呢?

近日,来自加州大学洛杉矶分校(UCLA)的研究人员利用 3D 打印技术打印出了固态的神经网络,并且利用层级传播的光衍射来执行计算,并达到了图像识别手写数字的效果。

光速运算实现突破,AI训练的成本难题或将得以解决
图为衍射深度神经网络(D^2NN)架构 图片来源:《science》

用光来执行运算其实与机器学习的经典算法之一 ——线性回归算法有着某种天然的合契,线性回归一般是根据连续变量来估计实际数值,而光的振幅、相位都属于可以调整的变量,这也是AI光速运算与传统计算机电路中电场传播所区别的地方。该项技术的发展,相信能为AI计算成本的不断降低和量产化目标带来助力。

用光执行运算,意味着什么?

随着技术落地,当光速运算技术被真正应用,会对人工智能有哪些改变呢?分析师颜璇认为,其在以下两个方面会有较大突破。

1、“黑匣子”成为了阳光下的“玻璃箱”

如果说人类是AI的“上帝”, 那么人类给AI的只是“生命”组合的规则,而真正的演化却是由AI自己完成的。

在初始阶段,AI的认知是十分有限的,它在不断地试错中寻求最佳结果,从而涌现出某种程度的智能。从人类的角度来讲,我们在AI认知的过程中是缺席的,在深度学习的框架下,我们“知其然而不知其所以然”,这就是著名的“黑匣子”问题。

AI预测你将在50年后死亡,你却不知道它运作的原理;无人驾驶的汽车撞上公路旁的护栏,你也不知道问题究竟出在哪里,只能送回原厂,修改全盘的算法。

让AI拥有了光,“黑匣子”的问题或许就能迎刃而解了。要知道,AI运算虽然是看不见摸不着的数字,但光的衍射却是实实在在的物理现象,如果将模型的预测过程固化为物理表示,就可以清楚地观察到人工智能运算的过程。

在用光执行运算的实验中,UCLA 的研究人员研发出了一个 3D 打印 AI 分析系统。这一系统可以通过光线的衍射来分析人工智能。研究人员也表示,通过改变相位和振幅,人工智能中每个“神经元”都将是可调的。

2. AI 的“养成”游戏:强人工智能的开启

强人工智能(有知觉和自我意识,且能推理和解决问题的智能机器)究竟能否实现?

有人预测,在21世纪内将出现能够与人类智能水平相当的AI。而这种预测的立场来源于一种建立在还原论基础上的计算主,其基本观点是认为物理世界、生命过程甚至人类心智都是算法可计算的。

人类的大脑就像一台计算机在运作,只要能够模拟出人类大脑的计算规则,我们就能够建立至少与人类水平相当的智能机器。当然了,这里面暗藏一个假设,即人类的全部意识均是大脑的计算产物。

如何创造出一个强人工智能, 我们或许就可以从人脑的计算量入手。这里有一个自然的假设,就是如果我们创造出一个AI,从零岁起就能够有足够的计算能力去模拟人类大脑运行18年,并以足够细的颗粒度去捕捉大脑的智力表现,这个AI能否像一位18岁的成年人一样解决问题?

而这个计算量有多大呢?模拟大脑一秒钟所需的每秒峰值速度(FLOPS,也称作“每秒浮点运算次数”)有很多测算,比如AI Impact收集的数据得出的中位数是1018 FLOPS,范围在3×10^13FLOPS与1×10^25FLOPS之间。运行这样的模拟18年相当于700万Petaflop。

而AI技术不断发展,其颗粒度只会更加细微,计算量也会更加大。如果能用光执行运算,无疑是为这一畅想提供了一项可行的技术。

光速运算的“硬伤”

用光来执行运算固然是革新了神经网络的计算方式,但是,这种方法本身还是有着一些问题。

首先,在上文提到的实验中,光的运算是建立在固化的神经网络的基础上,因此,当深度学习已经完成训练,并且将所有参数的值都确定下来,继而利用3D打印技术进行固化,打印出的神经网络就不能再被编程。

其次,打造一个能实现按需处理任务的超高精度衍射板是非常困难的,在解决了计算训练成本的难题时,很难说这个新技术不会带来硬件研发的成本难题。除了制作工艺外,还有硬件安装和环境稳定性的难题。

诚然,新技术的应用仍需要一段时间,用光来执行运算究竟能否满足高速增长的AI计算趋势,还需要我们积极探索。

随着计算问题的解决,人工智能也必将取得长足发展。

AI训练 光速运算 人工智能
上一篇:一文简述循环神经网络 下一篇:学习如何使用Python构建你自己的Twitter机器人
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

AI行业寒潮下,智能物流机器人产业迎来“风口”

“人工智能,前景很好,但‘钱’景不好 ” 、“2018年,人工智能的进展就是没有进展”、“2019年的AI行业已如石墨烯一样,尽显疲态”……一篇《投资人逃离人工智能》文章又给人工智能行业泼了一身冷水。人工智能融资难、“寒冬论”再一次戳痛每个人工智能从业者的心,激起大众的焦虑情绪。

AI报道 ·  19h前
人工智能应用在智慧社区五大场景

物联网、云计算、大数据、人工智能正逐步从概念走向应用。越来越多的传统产业也开始探索和创新,积极拥抱互联网和新技术。未来,人工智能技术可能会颠覆社区管理。

有熊 ·  19h前
基于PyTorch的CV模型框架,北大学生出品TorchCV

在机器学习带来的所有颠覆性技术中,计算机视觉领域吸引了业内人士和学术界最大的关注。

张倩、泽南 ·  21h前
高位截瘫患者重新行走:靠意念指挥外骨骼,法国脑机接口新突破

依靠介入头部的 2 个传感器,法国里昂的一名瘫痪男子 Thibault 实现了操控外骨骼装备来助力行走。

孙滔 ·  1天前
2008 年预测 2020 年生活方式:基本都实现了

美国皮尤研究中心曾在 2008 年预测 2020 年的生活方式,目前来看,该研究的预测基本已经实现。而对于未来 10 年,也就是 2030 年左右人们的生活,在 2017 年底的世界经济论坛上,800 多名信息和通讯技术领域的技术高管和专家给出了如下预测。

佚名 ·  1天前
机器学习的正则化是什么意思?

正则化的好处是当特征很多时,每一个特征都会对预测y贡献一份合适的力量;所以说,使用正则化的目的就是为了防止过拟合。

佚名 ·  1天前
为什么我的CV模型不好用?没想到原因竟如此简单……

机器学习专家 Adam Geitgey 近日发布了一篇文章探讨了这一简单却又让很多人头痛的问题,并分享了他为解决这一问题编写的自动图像旋转程序。

机器之心 ·  1天前
中文自动转SQL,准确率高达92%,这位Kaggle大师刷新世界纪录

首届中文NL2SQL挑战赛上,又一项超越国外水平的NLP研究成果诞生了。在NL2SQL这项任务上,比赛中的最佳成绩达到了92.19%的准确率,超过英文NL2SQL数据集WikiSQL目前完全匹配精度86.0%,执行匹配精度91.8%的最高成绩。

郭一璞 ·  1天前
Copyright©2005-2019 51CTO.COM 版权所有 未经许可 请勿转载