三个常见的机器学习错误要避免

作者: David Linthicum 2018-07-11 05:24:05

企业不断犯这三个错误:浪费资金,降低应用程序性能,还有成效不佳。

我非常喜欢基于云的机器学习和深度学习,以及一般意义上的人工智能。毕竟,如果你无法想象这样的场景——与能回答问题且执行命令的具有人工智能的实体展开对话,你就不能成为一名极客!

话虽这么说,我也发现,基于云的机器学习和深度学习一再被误用。这多半都可以轻松解决,当然,基于云的机器学已得到了广泛的使用。但你要用得巧妙,用得恰当。

以下是我看到的三个反复出现的错误。

1. 没有足够的数据来为知识模型提供训练

没有经历过任何学习的机器学习是毫无价值的。机器学习的真实用例是将算法应用于大量的数据,并且使某些模式显现出来,这些模式成了用于基于机器学习的应用程序的培训。

所以,没有数据就谈不上学习。虽然机器学习应用程序最终会收集数据并变得更加智能,但它需要一个出发点,在这个出发点,数据多得足以教会系统如何思考。

例如,有一些机器学习系统运行在医院中,这些系统用魔法般的手段向员工透露你住院期间死亡的可能性。如果连100,000个数据点都没有,你可以指望该可能性为0或100%——这毫无帮助。

2. 在不需要机器学习的地方使用机器学习

这是我见过的最常见的失败事项——因在应用程序中使用机器学习而导致公司在开发成本上增加两倍或三倍——完全平白无故地。机器学习系统在很多用例中根本没有发挥真正的优势。

程序逻辑在大多数情况下都管用,因此为会计系统或调度系统构建知识库就太过分了。更糟糕的是,由此产生的应用程序效率要低得多。

3. 不了解性能影响

在应用程序中嵌入机器学习系统有时可以使它们对业务更有价值。但这也可能会使应用程序的性能大打折扣。

试想一下:嵌入式机器学习服务在跨数据运行算法时可能会有几秒的延迟。如果该应用程序要近乎实时地提供响应,由于延迟响应导致的生产力损失,机器学习的一切价值都会迅速地消失。

机器学习 人工智能 数据
上一篇:人工智能的发展,主要有哪些成就,面临哪些挑战? 下一篇:构建深度神经网络,我有20条「不成熟」的小建议
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

从演电影到开车,细数人工智能的五大落地方向

越来越多的企业希望通过利用人工智能的功能来提高其ROI。这篇文章就将带你了解如今人工智能的五大落地方向。

读芯术 ·  8h前
新AI让教师能够快速开发智能辅导系统

通过使用一种采用人工智能的新方法,教师可以通过演示解决某个主题中的问题的几种方法来教计算机……

佚名 ·  14h前
拒绝简单代工,有人工智能的制造业前景更加光明

改革吹风吹大地,各界人士鼓干劲。在工业4.0大背景下,传统产业转型升级的浪潮如约而至,冲击着原有的产业结构与体系。人工智能与工业的深度融合,在无形中塑造着制造业的格局与面貌。

今夕何夕 ·  15h前
AI又一次打败了人类:仅凭一张自拍照片辨别个人性格

一项新研究表明,人工智能(AI)可在“仅凭一张自拍照片辨别个人性格”这件事上再次打败人类。与人类相比,机器能够更好地识别一种特征,通过分析人物面孔来确定物种不同的性格特质。

佚名 ·  20h前
终结重复工作!教你30分钟创建自己的深度学习机器

建立一个深度学习环境是一件很重要的事情。本文讲述使用深度学习 CommunityAMI、TMUX和 Tunneling在EC2为Jupyter Notebooks创建一个新的深度学习服务器。

读芯术 ·  20h前
化身阿凡达,国外小哥开源 AI 实时变脸工具 Avatarify

疫情期间,很多人都在用 Zoom 和 Skype 等软件进行视频会议。国外一位开发小哥觉得这样开会太无聊,于是基于 first-order-model 开发了一个能够把别人的照片套在自己脸上的“变脸”软件 Avatarify,并将其开源。

OSC神秘老司机 ·  21h前
“人脸识别”已衍生出“性格识别”,科技向善还要多久?

近日,《科学报告》期刊上刊登了一篇有关于人脸识别的新技术,俄罗斯研究团队开发了一款新 AI,可“仅凭一张自拍照片辨别个人性格”。

缙霄 ·  21h前
下一站AI:实时服务

随着实时解决方案的增长与人工智能技术的发展,工作负载的日益提升以及非结构化数据的爆炸式增长,数据中心的发展方向正朝着加速计算、存储与网络适应性前进。

佚名 ·  1天前
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载