三个常见的机器学习错误要避免

作者: David Linthicum 2018-07-11 05:24:05

企业不断犯这三个错误:浪费资金,降低应用程序性能,还有成效不佳。

我非常喜欢基于云的机器学习和深度学习,以及一般意义上的人工智能。毕竟,如果你无法想象这样的场景——与能回答问题且执行命令的具有人工智能的实体展开对话,你就不能成为一名极客!

话虽这么说,我也发现,基于云的机器学习和深度学习一再被误用。这多半都可以轻松解决,当然,基于云的机器学已得到了广泛的使用。但你要用得巧妙,用得恰当。

以下是我看到的三个反复出现的错误。

1. 没有足够的数据来为知识模型提供训练

没有经历过任何学习的机器学习是毫无价值的。机器学习的真实用例是将算法应用于大量的数据,并且使某些模式显现出来,这些模式成了用于基于机器学习的应用程序的培训。

所以,没有数据就谈不上学习。虽然机器学习应用程序最终会收集数据并变得更加智能,但它需要一个出发点,在这个出发点,数据多得足以教会系统如何思考。

例如,有一些机器学习系统运行在医院中,这些系统用魔法般的手段向员工透露你住院期间死亡的可能性。如果连100,000个数据点都没有,你可以指望该可能性为0或100%——这毫无帮助。

2. 在不需要机器学习的地方使用机器学习

这是我见过的最常见的失败事项——因在应用程序中使用机器学习而导致公司在开发成本上增加两倍或三倍——完全平白无故地。机器学习系统在很多用例中根本没有发挥真正的优势。

程序逻辑在大多数情况下都管用,因此为会计系统或调度系统构建知识库就太过分了。更糟糕的是,由此产生的应用程序效率要低得多。

3. 不了解性能影响

在应用程序中嵌入机器学习系统有时可以使它们对业务更有价值。但这也可能会使应用程序的性能大打折扣。

试想一下:嵌入式机器学习服务在跨数据运行算法时可能会有几秒的延迟。如果该应用程序要近乎实时地提供响应,由于延迟响应导致的生产力损失,机器学习的一切价值都会迅速地消失。

机器学习 人工智能 数据
上一篇:人工智能的发展,主要有哪些成就,面临哪些挑战? 下一篇:构建深度神经网络,我有20条「不成熟」的小建议
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

精心整理,机器学习的3大学习资源

机器学习有无尽可能性,该领域薪资高,工作者在工作上能享受到极大乐趣,这让他们大多数时候感觉不像工作。然而,零经验者如何在合理时间内掌握机器学习?本文会给出答案。

读芯术 ·  1天前
欺诈不可怕,机器学习算法分分钟拿下! 精选

根据一项调查,采用基于AI的解决方案的防欺诈专家中有80%认为AI对打击欺诈者有效。但是,仍然存在的问题是弄清楚哪种机器学习算法可以有效地检测未知的欺诈模式。监督学习和无监督学习算法哪一个更有效?

读芯术 ·  2天前
助力抗疫,人工智能和大数据将全面爆发? 精选

新型冠状病毒肺炎疫情的爆发和传播,牵动着全国人民的心。社会各界纷纷投入到这场没有硝烟的疫情阻击战中。

中国经营报 ·  3天前
为什么用Go编写机器学习的基础架构,而不是Python?

虽然Python是使用广泛的语言,并用于每个主要的机器学习框架中。然而,你能想象?在Cortex(将机器学习模型部署为API的开放源代码平台之一)代码库中,87.5%的代码都是使用GO编写。

读芯术 ·  3天前
人工智能和区块链如何在2020年彻底改变移动应用产业?

2020年也不例外。移动应用行业将以明显的方式增长。人们需要了解人工智能行业将发生什么变化,以及企业在新的一年中如何计划使用这些革命性技术。

Pradeep Makhija ·  3天前
人工智能“捷径”将模拟速度提高数十亿倍

即使用最快的超级计算机模拟复杂的自然现象也要花上几个小时,如大气雾霾如何影响气候。

辛雨 ·  3天前
人工智能如何推动神经科技发展?

神经科技以人类神经系统原理为基础,旨在研究人类大脑这一极为复杂的模型架构。在实际作用方面,神经科技将帮助研究人员了解大脑功能与引发功能障碍的原因,并助力医生治疗各类神经系统疾病。至于具体应用,神经科技目前主要关注增强认知能力、改善睡眠并改善长寿人群的大脑健康等。

佚名 ·  4天前
2020年了,深度学习接下来到底该怎么走?

机器学习资深从业者 Ajit Rajasekharan 在本文中汇集了深度学习领域各路大佬的想法,并分享了他本人的一些思考。

亚希伯恩•菲 ·  4天前
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载