人工智能+医疗为何如此受资本青睐,人工智能能否攻克医疗难题?

作者: 机器之能 2018-06-28 17:50:11

在 2018 年,仅前十大制药公司将创造超过三千亿美元的收入。与此同时,目前需要 10 年时间才能将新药推向市场,同时花费超过 25 亿美元(有时高达 120 亿美元)。即使进入 I 期临床试验的 10 种药物中,有 9 种不会进入市场。

随着人口老龄化,我们无法依赖这种低成功率、高成本的方式。到 2030 年,世界人口中约有 12% 的人口年龄在 65 岁及以上,像老年痴呆这样的「衰老疾病」将对社会构成越来越大的挑战。

随着人工智能与大量医疗数据结合使用,新药的研发将更加便宜和迅速,同时更加智能化。我所了解的该领域最热门的创业公司之一是 Insilico Medicine,利用人工智能在其端到端的药物管道中,通过对药物的研究,从而讨论未来长寿与健康的秘诀。

案例研究:利用 AI 进行药物探索

你可能已经了解过深度神经网络:人造神经元的多层网络,能够从大量数据中「学习」并且能够为自己做基本的编程。

建立在深度神经网络的基础上,将生成对抗网络(GAN),这是支持 Insilico 药物发现渠道的革命性技术。

什么是 GAN?「GAN 技术本质上是两个深层神经网络之间的敌对博弈,」Alex 解释说。

Alex 的最终目标是开发一个全自动的健康即服务(HaaS)/长寿服务(LaaS)引擎。一旦插入阿里巴巴公司到 Alphabet 公司的服务,这种引擎将为在线用户提供个性化解决方案,帮助他们预防疾病并保持***健康。

Insilico 的端到端管道

首先,Insilico 利用 AI(以 GAN 的形式)来确定目标(如下面的管道的***阶段所示)。为此,Insilico 使用来自健康组织样本和受疾病影响者的基因表达数据。(目标是药物打算作用的特定病理学中涉及的细胞或分子结构。)

仅此一项就可以实现医疗保健和医学研究的突破。但真正作用并不止于此。

在了解衰老过程中潜在的机制和因果关系之后,Insilico 使用 GAN 来「想象」新的分子结构。通过强化学习,Insilico 的系统以***的方式识别目标,然后从头生成自定义分子,从而达到这些特定目标。

在规模上,这也将涉及药物的副作用最小化,这是 Insilico 科学家 Polina Mamoshina 与牛津大学计算心血管团队合作开展的一项研究。

虽然仍处于发展的早期阶段,但准确的临床试验预测指标将使研究人员能够确定理想的临床前候选人。

从今天的情况来看,这是对于行业效率 10 倍的改善。

目前,通过传统技术发现并在小鼠身上测试的超过 90%的分子最终在人类临床试验中失败。准确的临床试验预测结果将导致药物测试成本,时间和开销大大削减。

药物发现

药物发现的数字化和非物质化变革已经发生。机器学习推动药物发现和分子生物学方面产生突破性进展,随着计算能力的提高,将以更低的成本,更惊人的速度向市场推出新的治疗方案,并且不需要大规模的基础设施建设和投资。

除量子计算的预期突破之外,我们将很快见证可预测分子数量的爆炸式增长,同时准确性大幅提升。

总结

人工智能技术的发展将在未来改变医疗行业效率低下、创新迟缓的问题。无论处于何种行业的人,大制药都是一个值得关注的领域。融合技术很快能够在长寿和疾病预防方面取得长足的进步,像 Insilico 这样的创业公司领导着行业变革。

在大规模数据集、不断提升的计算能力、量子计算、区块链及人工智能的等创新因素推动下,人类的健康状况及长寿的未来确实值得期待。

技术将比人类想象力更快的实现商业化,当询问 Alex 对行业的预期时,他的时间安排是二十年。

可能他的预测是保守的。

我的朋友 Ray Kurzweil 经常讨论「长寿逃逸速度」这个概念,即在你活着的每一年,科学都能够延长你的寿命超过一年。

Ray 的预测准确率达到了 86%,「这可能仅仅是大众还需要 10 到 12 年才能达到长寿逃跑速度。」

你将怎样使用生活中额外的 20 年或更多的健康年?

人工智能 机器学习 医疗难题
上一篇:以智能重构企业外呼 讯众通信发布云讯云雀智能语音机器人 下一篇:智能一点发布智能交互推荐系统与售前导购机器人
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

超过Google,微信AI在NLP领域又获一项世界第一

微信AI,NLP领域又获一项世界第一,这次是在机器阅读理解方面。

乾明 ·  1天前
AI如何改善采矿行业现状?

人工智能的引入,有望将采矿业转化成一个更安全、利润空间更大且更为环保的行业。

佚名 ·  1天前
大小仅1MB!超轻量级的人脸识别模型火爆Github

近日,用户Linzaer在Github上开源了一款适用于边缘计算设备、移动端设备以及 PC 的超轻量级通用人脸检测模型,该模型文件大小仅1MB,一经开源就霸榜Github Trending榜单。

佚名 ·  1天前
大数据和人工智能如何协同工作

人工智能和机器学习如何帮助组织从大数据中获得更好的业务见解?需要了解人工智能和大数据分析的下一步发展。大数据技术并不像几年前那样广受关注,但这并不意味着大数据技术没有得到发展。如果说有什么不同的话,那就是大数据的规模正在变得越来越大。

Kevin Casey ·  2天前
麻省理工学院开发出组装机器人:未来可建造太空殖民地

麻省理工学院博士生本杰明·杰内特(Benjamin Jenett)和原子中心的尼尔·格申费尔德教授(Neil Gershenfeld)在《电气电子工程师学会机器人与自动化快报》科学期刊上发表报告称,开发出一种组装机器人原型,它可以用很小的零件制成大型结构。

技术力量 ·  2天前
刷脸取件被小学生“破解”!丰巢紧急下线 精选

近日,#小学生发现刷脸取件bug#的话题引发关注!这是真的吗?都市快报《好奇实验室》进行了验证。

好奇实验室 ·  2天前
深度学习/计算机视觉常见的8个错误总结及避坑指南

人类并不是完美的,我们经常在编写软件的时候犯错误。有时这些错误很容易找到:你的代码根本不工作,你的应用程序会崩溃。但有些 bug 是隐藏的,很难发现,这使它们更加危险。

skura ·  2天前
AI艺术日渐繁荣,未来何去何从? 精选

利用人工智能创作而成的画作近年来越来越受瞩目,有的作品甚至能在知名拍卖行拍得高价。但这类作品仍有不少问题需要解答,比如它的作者是开发出算法的程序员还是计算机呢?AI艺术的市场未来将走向何方呢?

网易智能 ·  2天前
Copyright©2005-2019 51CTO.COM 版权所有 未经许可 请勿转载