人工智能+医疗为何如此受资本青睐,人工智能能否攻克医疗难题?

作者: 机器之能 2018-06-28 17:50:11

在 2018 年,仅前十大制药公司将创造超过三千亿美元的收入。与此同时,目前需要 10 年时间才能将新药推向市场,同时花费超过 25 亿美元(有时高达 120 亿美元)。即使进入 I 期临床试验的 10 种药物中,有 9 种不会进入市场。

随着人口老龄化,我们无法依赖这种低成功率、高成本的方式。到 2030 年,世界人口中约有 12% 的人口年龄在 65 岁及以上,像老年痴呆这样的「衰老疾病」将对社会构成越来越大的挑战。

随着人工智能与大量医疗数据结合使用,新药的研发将更加便宜和迅速,同时更加智能化。我所了解的该领域最热门的创业公司之一是 Insilico Medicine,利用人工智能在其端到端的药物管道中,通过对药物的研究,从而讨论未来长寿与健康的秘诀。

案例研究:利用 AI 进行药物探索

你可能已经了解过深度神经网络:人造神经元的多层网络,能够从大量数据中「学习」并且能够为自己做基本的编程。

建立在深度神经网络的基础上,将生成对抗网络(GAN),这是支持 Insilico 药物发现渠道的革命性技术。

什么是 GAN?「GAN 技术本质上是两个深层神经网络之间的敌对博弈,」Alex 解释说。

Alex 的最终目标是开发一个全自动的健康即服务(HaaS)/长寿服务(LaaS)引擎。一旦插入阿里巴巴公司到 Alphabet 公司的服务,这种引擎将为在线用户提供个性化解决方案,帮助他们预防疾病并保持***健康。

Insilico 的端到端管道

首先,Insilico 利用 AI(以 GAN 的形式)来确定目标(如下面的管道的***阶段所示)。为此,Insilico 使用来自健康组织样本和受疾病影响者的基因表达数据。(目标是药物打算作用的特定病理学中涉及的细胞或分子结构。)

仅此一项就可以实现医疗保健和医学研究的突破。但真正作用并不止于此。

在了解衰老过程中潜在的机制和因果关系之后,Insilico 使用 GAN 来「想象」新的分子结构。通过强化学习,Insilico 的系统以***的方式识别目标,然后从头生成自定义分子,从而达到这些特定目标。

在规模上,这也将涉及药物的副作用最小化,这是 Insilico 科学家 Polina Mamoshina 与牛津大学计算心血管团队合作开展的一项研究。

虽然仍处于发展的早期阶段,但准确的临床试验预测指标将使研究人员能够确定理想的临床前候选人。

从今天的情况来看,这是对于行业效率 10 倍的改善。

目前,通过传统技术发现并在小鼠身上测试的超过 90%的分子最终在人类临床试验中失败。准确的临床试验预测结果将导致药物测试成本,时间和开销大大削减。

药物发现

药物发现的数字化和非物质化变革已经发生。机器学习推动药物发现和分子生物学方面产生突破性进展,随着计算能力的提高,将以更低的成本,更惊人的速度向市场推出新的治疗方案,并且不需要大规模的基础设施建设和投资。

除量子计算的预期突破之外,我们将很快见证可预测分子数量的爆炸式增长,同时准确性大幅提升。

总结

人工智能技术的发展将在未来改变医疗行业效率低下、创新迟缓的问题。无论处于何种行业的人,大制药都是一个值得关注的领域。融合技术很快能够在长寿和疾病预防方面取得长足的进步,像 Insilico 这样的创业公司领导着行业变革。

在大规模数据集、不断提升的计算能力、量子计算、区块链及人工智能的等创新因素推动下,人类的健康状况及长寿的未来确实值得期待。

技术将比人类想象力更快的实现商业化,当询问 Alex 对行业的预期时,他的时间安排是二十年。

可能他的预测是保守的。

我的朋友 Ray Kurzweil 经常讨论「长寿逃逸速度」这个概念,即在你活着的每一年,科学都能够延长你的寿命超过一年。

Ray 的预测准确率达到了 86%,「这可能仅仅是大众还需要 10 到 12 年才能达到长寿逃跑速度。」

你将怎样使用生活中额外的 20 年或更多的健康年?

人工智能 机器学习 医疗难题
上一篇:以智能重构企业外呼 讯众通信发布云讯云雀智能语音机器人 下一篇:智能一点发布智能交互推荐系统与售前导购机器人
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

MIT提出Liquid机器学习系统,可像液体一样适应动态变化

麻省理工学院(MIT)的研究者开发出了一种新型的神经网络,其不仅能在训练阶段学习,而且还能持续不断地适应。

机器之心 ·  2021-02-21 15:47:47
规划智慧城市时,别忘了无障碍通行

要想成为一个智慧城市甚至一个智慧世界,虽然可能需要时间和有针对性的规划,但我们必须以人为本。

蒙光伟 ·  2021-02-21 10:26:41
2021关于人工智能的五大趋势

数字化变革,比过去10年更多,这主要是由于远程工作的规模,以及企业迅速部署了必要的技术,尤其是与网络安全相关的技术。那,2021关于人工智能的五大趋势会是如何的呢?

Lichu ·  2021-02-21 10:21:01
使数据中心更智能:人工智能如何发挥作用?

随着数据成为维持几乎所有业务运营以获取洞察力和业务成果的先决条件,数据中心正处于这种数字化转型的关键。

Cassie ·  2021-02-21 10:14:59
IBM拟出售Watson Health后,AI医疗还能不能碰

医疗服务仍然是一块商业上尚未被完全发掘的市场,看病难/看病贵、医疗资源紧缺、医疗资源不平均等痛点问题长期存在,对应的市场空间理应是巨大的。而Watson Health作为IBM曾寄予厚望的业务方向,为何要在此时萌生退意?它的故事给业界带来哪些启发?眼下的AI医疗市场,究竟是一副什么样的局面呢?

物联传媒 ·  2021-02-21 08:41:16
抛弃归一化,深度学习模型准确率却达到了前所未有的水平

我们知道,在传递给机器学习模型的数据中,我们需要对数据进行归一化(normalization)处理。

机器之心 ·  2021-02-20 21:09:12
华人博士生首次尝试用两个Transformer构建一个GAN

最近,CV 研究者对 transformer 产生了极大的兴趣并取得了不少突破。这表明,transformer 有可能成为计算机视觉任务(如分类、检测和分割)的强大通用模型。

Yifan Jiang ·  2021-02-20 21:04:53
无监督训练用堆叠自编码器是否落伍?ML博士对比了8个自编码器

柏林工业大学深度学习方向博士生 Tilman Krokotsch 在多项任务中对比了 8 种自编码器的性能。

Tilman Krokotsch ·  2021-02-20 20:57:16
Copyright©2005-2021 51CTO.COM 版权所有 未经许可 请勿转载