AIOps实践三板斧:从可视化、自动化到智能化

作者: 王雪燕 2018-06-22 22:36:23

2018年5月18-19日,由51CTO主办的全球软件与运维技术峰会在北京召开。此次峰会围绕人工智能、大数据、物联网、区块链等12大核心热点,汇聚海内外60位一线专家,是一场高端的技术盛宴,也是***IT技术人才学习和人脉拓展不容错过的平台。

在“容器下的AIOps”分会场,新炬网络董事、副总经理程永新做了主题为《AIOps实践三板斧:从可视化、自动化到智能化》的精彩演讲。程永新从事运维管理工作近二十年,历经了IT技术架构、运维管理模式与工具的变迁,本次演讲阐述了企业级AIOps的演进路线,从实际场景进行突破,围绕AIOps落地展开。

AIOps平台产品化之难何以突破

在移动化、大数据、云计算、人工智能等新技术的推动下, IT技术架构悄然变迁, 从传统“IOE架构”走向“互联网架构”。互联网架构所涉及的网元数、技术栈、服务数等元素成倍剧增,使得运维压力越来越大。这样的趋势下,运维管理模式从ITIL向DevOps演化,运维管理工具也发生了从ITOM、ITOA到AIOps的颠覆性变革。

虽然Gartner给出了AIOps平台市场指南,但是依照数据管理、模式算法、场景驱动这三要素进行,AIOps平台就能实现落地吗?其实不然。在这个过程中会遇到多重困难:其一,擅长开发的开发人员不擅长运维,擅长运维的运维人员不擅长开发;其二,规模不一的诸多历史系统纵向经历过几次迭代、横向经历过多大规模,是否能与AIOps***兼容?其三,AIOps平台产品化需要既能兼顾历史与未来需求,又能满足静态稳定与敏捷发展需要,还要能跨越规模与行业的界限。

新炬网络自2006年成立至今,一直在为电信、电力、航空、金融等大型企事业单位提供运维管理服务。结合行业实践经验,程永新提出了AIOps落地三板斧:从可视化、自动化到智能化,以新炬网络建设AIOps智能运维平台做示例,证实了场景驱动是实现AIOps落地的***方式。

AIOps落地三板斧之可视化

可视化为何如此重要,成为***板斧?原因在于可度量是一切管理的开始,可视化是管理结果的呈现。在AIOps落地过程中,不可或缺的环节是尽可能量化更多的指标,并且实现指标可视化。在这个过程中,企业需要构建立体的可视化监控体系,进而实现从业务到资源的立体、深度关联分析。

图1新炬网络可视化智能监控体系框架图

如图1所示,新炬网络的智能监控告警系统通过对操作系统、数据库、虚拟化、网络设备、中间件、存储等进行统一数据采集,让用户通过监控大屏即可实时查看系统各指标情况。此外,通过智能算法构建的可视化健康度模型,还将系统监控简化成智能打分形式,简化监控决策。

AIOps落地三板斧之自动化

AIOps落地的第二步是自动化,对于大量的频繁操作,如安装、部署、补丁下发、巡检操作等,都可以用自动化的方式来减少运维人员的工作量。

AIOps场景:故障分析自动化

图2 实时故障路径分析

如图2所示,在自动化处理过程中引入大数据和智能分析能力,实现运维实时故障路径分析、快速定位故障的能力,并能对复杂系统的“点、线、面”故障影响度进行分析。

AIOps场景:数据库运维自动化

图3 数据库智能运维与智能SQL优化

所有的PaaS核心在于数据库,而数据库运维的工作又在整个生产运维中占非常大的比重。如图3所示,新炬网络针对性地推出了DPM数据库智能运维平台,目前已经支持Oracle、DB2、MySQL、SQL Server等多种常见数据库,实现一个平台多种数据库的智能运维管理,可快速发现问题、定位问题、提供优化建议,还可以对应用版本变更过程引发的SQL问题,提出针对性的优化建议、对高危SQL进行自动识别与审核,降低应用上线带来的风险。

AIOps落地三板斧之智能化

走过了可视化、自动化阶段,就解决了企业80%的运维问题,那么接下来如何走向智能化?突破口在于场景驱动。新炬网络根据自身在企业级运维服务市场深耕十余年的经验,总结出智能巡检、资源管理、应用容量、网络安全、用户体验、故障诊断、容灾切换、安全审计这八大运维场景,均可从自动化走向智能化。

图4 智能化落地前提:运维大数据

如图4所示,程永新特别强调了运维大数据的关键作用,它是智能化落地的前提。以新炬网络为例,当有了统一采集、多维立体的可视化监控体系,实现了八大运维场景自动化之后,基于新炬网络自主研发的IVORY大数据日志分析平台,发力AIOps实时运维数据分析,从而实现故障的提前预警、异常隐患的及时发现及趋势分析。IVORY结合了多年的行业运维经验沉淀,逐步探索出了告警自愈、故障自动恢复等能力,并在移动运营商和金融行业实现了生产实践。

新炬网络AIOps企业级实践与演进路线

新炬网络AIOps企业级实践与演进路线整体分为三个阶段:运维平台基础能力、运维大数据和工具能力,以及AIOps能力及场景落地,每个阶段的相关建设与举措如图5所示。

图5 新炬网络AIOps企业级实践与演进路线图

在演讲过程中,程永新还提及到新炬网络助力多家金融企业客户实施AIOps落地的案例,包括针对全国性商业银行数据库实施的智能运维、针对金融风控数据部署的大数据分析应用,以及为金融企业提供的整体AIOps智能运维平台等。在金融行业信息化建设层面,新炬网络坚持“企业级产品+本地化服务”的双轮驱动战略,在其十余年大型企业运维服务经验中厚积薄发,推动金融科技创新、加快新技术在金融行业的应用。

新炬网络 AIOps 三板斧
上一篇:程序员裸辞后转人工智能,4个月后开始后悔,期间经历坎坷 下一篇:麻省理工学院爆黑科技 通过思维命令机器执行任务
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

鼎茂科技-上海人工智能研究院AIOps联合实验室成立

3月30日,鼎茂科技与上海人工智能研究院在上海真如城市副中心举行了战略合作签约仪式,成立【智能运AIOps联合实验室】,共同加速推动AIOps产学研用一体化发展。

佚名 ·  2021-03-31 10:50:51
AIOps入门指南

在这篇文章中,我们将帮助您通过AIOps转变一个新的、面向未来的业务来简化您的IT操作!让我们开始吧。

佚名 ·  2021-03-26 10:31:19
AIOps“入坑”之前必须了解的知识

通过本文介绍的五个基本步骤,企业有望充分发挥AIOps的强大威能,由此构建起更易于运营、且使用感受更为友好的自主运行网络体系。

至顶网 ·  2021-03-25 10:14:10
2021年AIOps会给企业带来哪些新变化?

在本文中,我们将一起聊聊AIOps的演变方式,以及企业该如何从这一新兴技术中发掘收益。

至顶网 ·  2021-03-25 10:11:39
AIOps的7个关键功能

企业在选择AIOps工具时,务必小心谨慎。只有满足七项基本要求的出色AIOps工具,才能巩固业务战略成果、带来稳固可靠的IT运营能力。

至顶网 ·  2021-03-25 10:10:09
AIOps如何转变IT管理

Gartner公司指出,AIOps将大数据和机器学习相结合,以实现IT运营流程的自动化。它本质上是下一代IT运营,并通过机器学习(ML)和人工智能(AI)进行了增强。

Clark Zoeller ·  2021-03-18 12:41:42
有关AIOps的6个误解和解释

你认为DevOps很难理解吗?可以先了解AIOps。调研机构Gartner公司于5年前首次创造了这个术语,AIOps的含义如今已从“Algorithmic IT Operations(基于算法的 IT 运维)”转换为“AI Operations(人工智能运维)”。

Marcel Hild ·  2021-03-16 10:40:40
三招为AIOps落地开个好头

清点系统与流程,关注正确数据,绘制生态系统图,这三招能帮助企业成功迈出AIOps探索之旅的第一步。

佚名 ·  2021-03-08 16:12:35
Copyright©2005-2021 51CTO.COM 版权所有 未经许可 请勿转载