大数据+人工智能 双擎驱动企业数字化转型

作者: 查士加 2018-06-13 10:55:55

【51CTO.com原创稿件】数字化时代,大数据及人工智能成为驱动企业业务增长的技术引擎,数字化转型也已成为企业生存和发展的必修课。全球领先的数据和分析解决方案供应商Teradata天睿公司,也在加速其在大数据及人工智能领域的布局,适时推出了Teradata Everywhere及AI战略,强化Teradata分析平台(Teradata Analytics Platform),助力客户加速数字化转型。

AI的概念十分宽泛,在Teradata天睿公司***技术官Stephen Brobst(宝立明)看来,“AI人工智能就是深度学习,我们可以使用多层神经网络进行更加先进的分析,Teradata在今年年初就已在中国市场上发布Teradata分析平台,它的并行分布式处理能力可以进行更加先进的分析,可以融合TensorFlow、机器学习、GrafX等相关的技术。”

Teradata天睿公司***技术官Stephen Brobst(宝立明)

深度学习应用的三大场景:

宝立明在接受记者采访时列举了深度学习技术成功应用的三大领域:

***、 防欺诈。使用了深度学习技术,金融服务、信用卡、电信、零售业等多个行业都可以发现并预防欺诈,运用深度学习的预测性比传统线性数据分析模型要好得多。

第二、 建议引擎。通过建立建议引擎,企业可以比自己的客户更先知道他们在具体领域的需求。建议引擎是深度学习与浅学习的结合。浅学习是非常简单的数学模型,例如你买了衬衫可能还需要一条领带,浅学习的成本很低、分析也十分简单。

把浅学习向深度学习拓展,则可以给客户提出更加有针对性的建议,如通过深度学习分析客户喜欢的颜色、购买行为,以及对所推荐产品的接受度等等,优化成本的同时做出更加准确的预测。

第三、 传感器数据。在工业领域,客户通过传感器测量机器各个零部件的振幅、温湿度以及功耗等数据,再复杂一点的还可以记录机器运转的声音。很多传感器数据都是非结构性的,这些数据放到深度学习引擎中,可以在机器坏掉之前做预测,方便客户更换零部件,避免因机器损坏带来的经济损失。

Teradata与高校通力合作 加速AI商业变现

当然,深度学习的应用领域非常多,众多研究和应用均表明,深度学习技术在医疗领域的应用是可行的。医生这一神圣的职业需要大量的临床医疗经验做积累,而机器通过深度学习和训练之后,给病人做出的诊断甚至比医生要准确得多。

但是,由机器给出的诊断,医生却很难给出解释。宝立明举了个简单的例子:“比如,机器给出的诊断结果是要病人锯掉一条腿,医生在不明原因的情况下是无法下达手术通知的。” 这就引出了AI界的热门领域——解释性。“现在国际上很多知名的大学,如美国的康奈尔大学、麻省理工学院、斯坦福大学、加拿大沃特卢大学,以及中国的众多高等学府,都在研究人工智能的解释性,它相当于神经网络的反向工程,就是要解释为什么机器会给出这条建议。”

目前针对人工智能的解释性探索仍停留在大学研究层面,开源的GitHub可以用来做早期的研究,尚未达到行业试用阶段。宝立明提到,今年5月,“史上最严”的欧盟隐私法案《通用数据保护条例》生效,该条例要求所做出的任何决定都是透明的,而采用深度学习算法得出来的建议都是缺乏透明性的,不符合合规性要求,解释性将是AI研究的重点方向。

同时,他还提到,Teradata的Think Big分析团队正在与客户一起用开源的代码进行相关的研究工作,让客户能够通过先进的分析做出生产型的结果,让其为大型银行所用。此外,Teradata正在同麻省理工学院、斯坦福大学等高校在AI的上述研究领域展开合作,加速将相关产品快速推向市场,让AI技术尽快为客户所用。

Teradata Everywhere对客户的两项承诺

数字经济时代,数据已经成为产生业务价值的核心,这意味着数字化转型已成为很多行业生死攸关的问题。未来十几年,实现数字化转型仍将是所有企业发展的主旋律。新兴技术、分析引擎与方法论日新月异,因此企业需要分析技术,帮助他们快速适应这些新兴技术,随业务需求变化不断发展。为满足这一需求,Teradata推出Teradata Everywhere,随客户需求变化,保护其技术投资,使客户对未来发展充满信心。

Teradata Everywhere是Teradata战略的重要方向,它可以在任何环境部署,且实现了任意方式购买和任意时间迁移。宝立明向记者介绍,“现在我们将软件和硬件拆分开来,让我们的软件可以在任何环境上运行,不论是放在公有云、私有云、托管云、VMware的虚拟云,还是放在本地,我们的软件都可以运行,包括微软Azure、AWS以及中国本土的云平台,部署在哪些云上只是商业性的决策,在技术层面上我们已经做到无处不在,这对我们来说是革命性的突破。”

Teradata Everywhere在战略方面对客户有两个承诺:一是Teradata Everywhere的相关功能,无论用户将工作负载放在本地还是放在云上,在任何环境运行都是一样的,不需要变化任何代码。Teradata向客户提供单一的源码线(SourceCodeLine),无论部署在云上还是部署在本地,实现的功能是相同的,只是在性能上会有细微差异。Teradata Everywhere的第二个承诺是,只要客户购买了软件,便可以将软件运行在任何地方,无论是运行在本地、AWS、微软Azure还是其他云平台,客户进行软件和业务的迁移时均无需花费额外费用。

“对Teradata的客户来说,我们不会从技术或产品功能上将客户锁定在我们的产品上,在财务上我们也不会因为他迁移到别处运行就多收费,Teradata Everywhere的宗旨就是让客户可以在任何情况下平等地去部署,让客户不再被供应商锁定,可以随时进行业务的迁移。” 宝立明着重地强调了Teradata Everywhere的战略目标。

Teradata继续拥抱开源

Teradata公司是***家使用开源技术的数据库公司,在开源领域有着深厚的技术积累。宝立明表示:“Teradata最早的关系型数据库产品就是基于开源的Linux、Unix环境开发的。现在,Teradata已成功将机器学习、深度学习、Spark、TensorFlow等开源引擎放在Teradata的数据分析平台上,与开源的Hadoop平台进行深度整合。”

Teradata QueryGrid大数据分析解决方案,实现了Teradata和Hadoop之间数据的互操作性,这样可以把非结构化的数据放在Hadoop上,通过处理之后,把它变成半结构化或者结构化的数据,从而更好地为用户所用。

此外,Teradata在开源的Web服务器软件Apache,以及Presto软件方面做了较大贡献,后者是Facebook推出的大数据分布式SQL查询引擎。宝立明补充,“总之,开源是我们的朋友,Teradata一直在努力构建开源生态,增强数据的互操作性。”

【51CTO原创稿件,合作站点转载请注明原文作者和出处为51CTO.com】

大数据 人工智能 Teradata CTO 宝立明
上一篇:大咖云集 2018荣之联IT赋能者峰会嘉宾阵容重磅公布 下一篇:人工智能揭示提高员工保留率的秘密
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

欺诈不可怕,机器学习算法分分钟拿下! 精选

根据一项调查,采用基于AI的解决方案的防欺诈专家中有80%认为AI对打击欺诈者有效。但是,仍然存在的问题是弄清楚哪种机器学习算法可以有效地检测未知的欺诈模式。监督学习和无监督学习算法哪一个更有效?

读芯术 ·  2天前
助力抗疫,人工智能和大数据将全面爆发? 精选

新型冠状病毒肺炎疫情的爆发和传播,牵动着全国人民的心。社会各界纷纷投入到这场没有硝烟的疫情阻击战中。

中国经营报 ·  3天前
人工智能和区块链如何在2020年彻底改变移动应用产业?

2020年也不例外。移动应用行业将以明显的方式增长。人们需要了解人工智能行业将发生什么变化,以及企业在新的一年中如何计划使用这些革命性技术。

Pradeep Makhija ·  3天前
人工智能“捷径”将模拟速度提高数十亿倍

即使用最快的超级计算机模拟复杂的自然现象也要花上几个小时,如大气雾霾如何影响气候。

辛雨 ·  3天前
人工智能如何推动神经科技发展?

神经科技以人类神经系统原理为基础,旨在研究人类大脑这一极为复杂的模型架构。在实际作用方面,神经科技将帮助研究人员了解大脑功能与引发功能障碍的原因,并助力医生治疗各类神经系统疾病。至于具体应用,神经科技目前主要关注增强认知能力、改善睡眠并改善长寿人群的大脑健康等。

佚名 ·  3天前
2020年了,深度学习接下来到底该怎么走?

机器学习资深从业者 Ajit Rajasekharan 在本文中汇集了深度学习领域各路大佬的想法,并分享了他本人的一些思考。

亚希伯恩•菲 ·  4天前
AI战「疫」:百度开源口罩人脸检测及分类模型

2 月 13 日,百度飞桨宣布开源业界首个口罩人脸检测及分类模型。基于此模型,可以在公共场景检测大量的人脸同时,把佩戴口罩和未佩戴口罩的人脸标注出来,快速识别各类场景中不重视、不注意防护病毒,甚至存在侥幸心理的人,减少公众场合下的安全隐患。

Synced ·  4天前
2020年,比较适合AI的5种编程语言

AI系统的开发必须有计算机代码,而计算机程序的开发有不同类型的编程语言可以选择。本文分析哪些编程语言最适合你的人工智能或机器学习用例开发。

CSDN App ·  4天前
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载