人工智能与大数据的区别

作者: 佚名 2018-06-07 15:22:58

人工智能和大数据是人们耳熟能详的流行术语,但也可能会有一些混淆。人工智能和大数据有什么相似之处和不同之处?它们有什么共同点吗?它们是否相似?能进行有效的比较吗?

500535578_wx

有人认为将人工智能与大数据结合在一起是一个很自然的错误,其部分原因是两者实际上是一致的。但它们是完成相同任务的不同工具。但首先要做的事是先弄清二者的定义。很多人并不知道这些。

人工智能与大数据一个主要的区别是大数据是需要在数据变得有用之前进行清理、结构化和集成的原始输入,而人工智能则是输出,即处理数据产生的智能。这使得两者有着本质上的不同。

人工智能是一种计算形式,它允许机器执行认知功能,例如对输入起作用或作出反应,类似于人类的做法。传统的计算应用程序也会对数据做出反应,但反应和响应都必须采用人工编码。如果出现任何类型的差错,就像意外的结果一样,应用程序无法做出反应。而人工智能系统不断改变它们的行为,以适应调查结果的变化并修改它们的反应。

支持人工智能的机器旨在分析和解释数据,然后根据这些解释解决问题。通过机器学习,计算机会学习一次如何对某个结果采取行动或做出反应,并在未来知道采取相同的行动。

大数据是一种传统计算。它不会根据结果采取行动,而只是寻找结果。它定义了非常大的数据集,但也可以是极其多样的数据。在大数据集中,可以存在结构化数据,如关系数据库中的事务数据,以及结构化或非结构化数据,例如图像、电子邮件数据、传感器数据等。

它们在使用上也有差异。大数据主要是为了获得洞察力,例如Netflix网站可以根据人们观看的内容了解电影或电视节目,并向观众推荐哪些内容。因为它考虑了客户的习惯以及他们喜欢的内容,推断出客户可能会有同样的感觉。

人工智能是关于决策和学习做出更好的决定。无论是自我调整软件、自动驾驶汽车还是检查医学样本,人工智能都会在人类之前完成相同的任务,但速度更快,错误更少。

虽然它们有很大的区别,但人工智能和大数据仍然能够很好地协同工作。这是因为人工智能需要数据来建立其智能,特别是机器学习。例如,机器学习图像识别应用程序可以查看数以万计的飞机图像,以了解飞机的构成,以便将来能够识别出它们。

人工智能实现最大的飞跃是大规模并行处理器的出现,特别是GPU,它是具有数千个内核的大规模并行处理单元,而不是CPU中的几十个并行处理单元。这大大加快了现有的人工智能算法的速度,现在已经使它们可行。

大数据可以采用这些处理器,机器学习算法可以学习如何重现某种行为,包括收集数据以加速机器。人工智能不会像人类那样推断出结论。它通过试验和错误学习,这需要大量的数据来教授和培训人工智能。

人工智能应用的数据越多,其获得的结果就越准确。在过去,人工智能由于处理器速度慢、数据量小而不能很好地工作。也没有像当今先进的传感器,并且当时互联网还没有广泛使用,所以很难提供实时数据。人们拥有所需要的一切:快速的处理器、输入设备、网络和大量的数据集。毫无疑问,没有大数据就没有人工智能。

人工智能 大数据 比较
上一篇:10本必读的机器学习和数据科学免费在线电子书 下一篇:阿里达摩院公布自研语音识别模型DFSMN并宣布开源
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

AI行业寒潮下,智能物流机器人产业迎来“风口”

“人工智能,前景很好,但‘钱’景不好 ” 、“2018年,人工智能的进展就是没有进展”、“2019年的AI行业已如石墨烯一样,尽显疲态”……一篇《投资人逃离人工智能》文章又给人工智能行业泼了一身冷水。人工智能融资难、“寒冬论”再一次戳痛每个人工智能从业者的心,激起大众的焦虑情绪。

AI报道 ·  1天前
人工智能应用在智慧社区五大场景

物联网、云计算、大数据、人工智能正逐步从概念走向应用。越来越多的传统产业也开始探索和创新,积极拥抱互联网和新技术。未来,人工智能技术可能会颠覆社区管理。

有熊 ·  1天前
基于PyTorch的CV模型框架,北大学生出品TorchCV

在机器学习带来的所有颠覆性技术中,计算机视觉领域吸引了业内人士和学术界最大的关注。

张倩、泽南 ·  1天前
高位截瘫患者重新行走:靠意念指挥外骨骼,法国脑机接口新突破

依靠介入头部的 2 个传感器,法国里昂的一名瘫痪男子 Thibault 实现了操控外骨骼装备来助力行走。

孙滔 ·  1天前
2008 年预测 2020 年生活方式:基本都实现了

美国皮尤研究中心曾在 2008 年预测 2020 年的生活方式,目前来看,该研究的预测基本已经实现。而对于未来 10 年,也就是 2030 年左右人们的生活,在 2017 年底的世界经济论坛上,800 多名信息和通讯技术领域的技术高管和专家给出了如下预测。

佚名 ·  1天前
机器学习的正则化是什么意思?

正则化的好处是当特征很多时,每一个特征都会对预测y贡献一份合适的力量;所以说,使用正则化的目的就是为了防止过拟合。

佚名 ·  1天前
为什么我的CV模型不好用?没想到原因竟如此简单……

机器学习专家 Adam Geitgey 近日发布了一篇文章探讨了这一简单却又让很多人头痛的问题,并分享了他为解决这一问题编写的自动图像旋转程序。

机器之心 ·  1天前
中文自动转SQL,准确率高达92%,这位Kaggle大师刷新世界纪录

首届中文NL2SQL挑战赛上,又一项超越国外水平的NLP研究成果诞生了。在NL2SQL这项任务上,比赛中的最佳成绩达到了92.19%的准确率,超过英文NL2SQL数据集WikiSQL目前完全匹配精度86.0%,执行匹配精度91.8%的最高成绩。

郭一璞 ·  1天前
Copyright©2005-2019 51CTO.COM 版权所有 未经许可 请勿转载