Python 扩大领先优势, PyTorch 仅占 6.4%

作者: 佚名 2018-05-28 09:12:10

近日,著名数据科学网站 KDnuggets 发布了 2018 年数据科学和机器学习工具调查结果。超过 2000 人对自己「过去 12 个月内在项目开发中使用过的数据挖掘/机器学习工具和编程语言」进行了投票。该统计还对过去三年来的排名进行了对比分析。

这份投票结果既有预料之内,也有预料之外的部分。数据显示,Python 作为机器学习常用的编程语言正在不断扩大领先优势,R 语言的使用率第一次降到了 50% 以下。在深度学习框架上,最近呼声很高的深度学习框架 PyTorch 仅仅占据了 6.4% 的使用率,远远落后于 TensorFlow 的 29.9% 和 Keras 的 22.2%。

Python 继续侵蚀着 R 的用户领域,RapidMiner 热门度增加,SQL 保持稳定,TensorFlow 和 Keras 引领前进,Hadoop 衰落,数据科学平台整合等等。

第 19 次年度 KDnuggets 软件调查有超过 2300 人参与投票,略微少于 2017 年,可能是因为仅有一个供应商 RapidMiner 积极地参与 KDnuggests 调查的投票。平均来说,每个参与者选择 7 个使用过的不同工具,因此仅投票一个工具会带来偏差。KDnuggets 排除了大约 260 个这样的「独好」投票(主要来自 RapidMiner),因为即使他们代表了该工具的合法用户,他们的行为也是非典型的,并且会歪曲结果。

以下是基于 2052 个参与者的初始结果分析,其中「独好」投票者已被排除。更多详细分析和匿名数据将在大约两周内公布。

最受欢迎的分析、数据科学、机器学习工具

图 1:KDnuggests 分析/数据科学 2018 年软件调查:2018 年最受欢迎工具,以及它们相对于 2016-2017 年的排名变化。(为了更有效的比较,KDnuggests 排除了「独好」投票者并重新计算了 2016 年、2017 年的调查结果。)

上图显示了排名前 11 的工具,每个工具的使用率至少为 20%。

表 1:KDnuggests 2018 年软件调查最受欢迎的分析/数据科学/机器学习软件

在这里,「2018 % share」一栏是指使用该工具的用户百分比,「% change」是指和 2017 年软件调查相比的变化比例,绿色和红色标记表示比例的变化幅度达到了 10% 或更多。

每个投票人的平均使用工具数量是 7 个,略微高于 2017 年调查的 6.75 个(也排除了「独好」投票人)。

和 2017 年的软件调查相比,进入前 11 名的新工具是 Keras。Knime 从第 11 名下跌,可能是因为今年他们并没有积极调动其用户参与投票。

以下是一些观察结果。

Python 正在吞噬 R 的用户领域

2017 年 Python 的使用率超过 50%,今年它的使用率上升至 66%,而 R 的使用率首次下跌,跌破 50%。

RapidMiner 

在之前的几次问卷中,RapidMiner 这一顶级数据科学平台正快速传播,它的用户使用率由 2017 年的 33% 增长到了今年的 52.7%。根据 RapidMiner 的创始人和董事长 Ingo Mierswa,他们采取了一些措施鼓励用户参与该调查。

对于 KDnuggets 的问卷调查,Ingo Mierswa 说:「近两年我们都向用户发送邮件推广该问卷调查,但今年有超过 400 多位用户回邮件表示很高兴能帮助 RapidMiner 的传播。而且今年 RapidMiner 月度活跃用户增长率超出去年 300%,因此我们向更多用户发送了关于 KDnuggets 问卷调查的邮件。我很高兴看到如此活跃的社区。」

SQL 保持稳定

作为数据管理系统的程序语言,SQL(包括 Spark SQL 和 SQL to Hadoop 工具)继续保持着约 40% 的使用率,和之前 3 次调查结果一样。因此,如果你是一位有雄心壮志的数据科学家,学习 SQL 吧,它在很长一段时间里都会很有用!

趋势

该调查唯一使用率超过 2% 的新工具是 Spark SQL,使用率达到 11.7%。下表列举了使用率增幅达到 20% 及以上、2018 年使用率为 3% 以上的工具。

表 2:使用率增幅最大的主要分析/数据科学/机器学习工具。

整合

2017 年使用率达到 2% 及以上的 56 个工具中,有 19 个(仅 1/3)工具在 2018 年使用率有所上升,其余 37 个均下降。这和近期的收购案(Datawatch 收购 Angoss、Minitab 收购 Salford)一道表明数据科学平台的整合正在进行过程中。

2017 年使用率至少 3% 的工具,今年下降了 25% 甚至更多,详见下表。

表 3:使用率跌幅最大的主要分析/数据科学工具。

深度学习工具

近两年,该调查中使用深度学习工具的投票者所占份额保持稳定。2018 年有 33% 的投票者使用深度学习工具,2017 年和 2016 年分别有 32% 和 18%。谷歌维护的 TensorFlow 仍然占主导地位,而发展迅速的 Keras 可作为构建在 TensorFlow 和 MXNet 等框架上的高级 API。

另一方面,主要由 Facebook 推动,推出已过一年的 PyTorch 吸引了一批研究者和工程人员,使用率达到 6.4%,排名第三。由于这款深度学习框架已和 Caffe2 合并,在未来我们肯定将会看到 PyTorch 占据更大的份额。

不过 KDnuggets 更关注数据科学,也更常使用浅层的机器学习算法。我们可能更希望了解机器学习及深度学习社区在框架上的选择,因此读者可以在文末对常用的深度学习框架进行投票。

深度学习工具排名:

  • Tensorflow, 29.9%

  • Keras, 22.2%

  • PyTorch, 6.4%

  • Theano, 4.9%

  • Other Deep Learning Tools, 4.9%

  • DeepLearning4J, 3.4%

  • Microsoft Cognitive Toolkit (Prev. CNTK), 3.0%

  • Apache MXnet, 1.5%

  • Caffe, 1.5%

  • Caffe2, 1.2%

  • TFLearn, 1.1%

  • Torch, 1.0%

  •  Lasagne, 0.3%

大数据工具:Hadoop 使用率下降

2018 年,大约 33% 的用户使用大数据工具,要么是 Hadoop,要么是 Spark,和 2017 年一样。但 Hadoop 的使用率显著下降,跌幅超过 30%。

以下是相关细节:

编程语言

Python 似乎不仅正在取代 R,还包括除了 SQL、Java、C/C++ 之外的大多数其它语言,这三者与 Python 大致处于同一个级别。自 KDnuggets 开始做这项调查以来,R 使用率首次出现下跌。其它语言也出现了衰落的趋势。

以下是按热门度排序的主要编程语言:

  • Python, 65.6% (was 59.0% in 2017), 11% up

  • R, 48.5% (was 56.6%), 14% down

  • SQL, 39.6% (was 39.2%), 1% up

  • Java, 15.1% (was 15.5%), 3% down

  • Unix, shell/awk/gawk, 9.2% (was 10.8%), 15% down

  • Other programming and data languages, 6.9%, (was 7.6%), -9% down

  • C/C++, 6.8%, (was 7.1%), 3% down

  • Scala, 5.9%, (was 8.3%), 29% down

  • Perl, 1.0% (was 1.9%), 46% down

  • Julia, 0.7% (was 1.2%), 45% down

  • Lisp, 0.3% (was 0.4%), -25% down

  • Clojure, 0.2% (was 0.3%), -38% down

  • F, # 0.1% (was 0.5%), -73% down

地区参与度

本次调查中不同地区的参与比例是:

  • 欧洲,37.5%

  • 美国/加拿大,36.6%

  • 亚洲,11.7%

  • 拉丁美洲,6.6%

  • 非洲/中东,4.5%

  • 澳大利亚/新西兰,3.1%

和 2017 年相比,主要的变化是欧洲的参与比例变高了(之前为 35.5%),而美国/加拿大的参与比例变低了(之前为 41.5%)。

完整结果和 3 年来的趋势

以下表格展示了调查结果的细节(由于篇幅限制,此处仅列出排名前 12 的工具):

Python 机器学习 编程语言
上一篇:7类AI淘金者:各显神通,但钱到底被谁赚了? 下一篇:AR中的人工智能
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

2019年你不可不知的十大Python库,可实现机器学习

在本文中,我们将讨论 Python 中的一些优选库,开发人员可以使用这些库来解析、清理和表示数据,并在现有应用中实现机器学习。

AI前线小组 译 ·  2019-07-30 08:02:57
5种人工智能编程语言!Java依然屹立不倒!

人工智能是工程学的一个分支,其基本目的是使计算机能够以与智能人类相似的方式智能思考。以下是最常用于制作AI项目的顶级语言。

引力空间站 ·  2019-05-16 14:15:33
使用Python进行社交媒体情感分析入门

本文研究了 NLP 的一个特定领域:情感分析。重点是确定输入语言的积极、消极或中性性质。本部分将解释 NLP 和情感分析的背景,并探讨两个开源的 Python 包。

Michael Mccune ·  2019-05-14 10:37:26
五大人工智能流行编程语言对比,只要学会一种绝对不亏!

就像大多数软件应用程序的开发一样,开发人员也在使用多种语言来编写人工智能项目,但是现在还没有任何一种完美的编程语言是可以完全速配人工智能项目的。编程语言的选择往往取决于对人工智能应用程序的期望功能。

编程小火车 ·  2019-04-08 20:00:22
深度解析Python深度学习框架的对比

Indico Data Solutions 的 CTO Madison May 根据他们公司在产品和开发过程中的经验对 Python 深度学习框架进行了对比,希望这篇文章能对读者有所帮助。

大数据资讯平台 ·  2019-03-06 09:55:54
流行的十四个机器学习编程语言框架和工具

本文介绍了面向数据科学界宠儿Python的软件框架和库、大数据平台以及处理机器学习管道每个阶段的基于云的服务。

布加迪 ·  2019-02-27 08:00:00
人工智能时代,我用Python写了一个智能机器人来聊天,非常不错!

人工智能已是趋势,智能酒店,智能网吧,无人驾驶等等都已经实现,过不了多久,就会普及我们的生活圈子;同样,智能时代的来临意味着很多人将会面临失业。我们要跟着时代的发展前进,这样,我们才不会被时代所抛弃,所淘汰!

编程python新视野 ·  2018-12-29 14:50:06
Julia vs Python:哪种编程语言会是2019年机器学习界的No 1?

Julia于2018年崭露头角,现成为增长速度最快的编程语言之一,因结合几种主要语言的优势而备受推崇。

布加迪 ·  2018-12-12 09:33:58
Copyright©2005-2019 51CTO.COM 版权所有 未经许可 请勿转载