值得收藏的27个机器学习的小抄

作者: 佚名 2018-04-26 10:48:36

机器学习(Machine Learning)有很多方面,当我开始研究学习它时,我发现了各种各样的“小抄”,它们简明地列出了给定主题的关键知识点。最终,我汇集了超过 20 篇的机器学习相关的小抄,其中一些我经常会翻阅,而另一些我也获益匪浅。这篇文章里面包含了我在网上找到的 27 个小抄,如果你发现我有所遗漏的话,请告诉我。

机器学习领域的变化是日新月异的,我想这些可能很快就会过时,但是至少在目前,它们还是很潮的。

机器学习

这里有一些有用的流程图和机器学习算法表,我只包括了我所发现的最全面的几个。

神经网络架构

来源: https://www.asimovinstitute.org/neural-network-zoo/

神经网络架构

神经网络公园

微软 Azure 算法流程图

来源: https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-algorithm-cheat-sheet

用于微软 Azure 机器学习工作室的机器学习算法

SAS 算法流程图

来源: https://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/

SAS:我应该使用哪个机器学习算法?

算法总结

来源: https://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/

机器学习算法指引

来源: https://thinkbigdata.in/best-known-machine-learning-algorithms-infographic/

已知的机器学习算法哪个***?

算法优劣

来源: https://blog.dataiku.com/machine-learning-explained-algorithms-are-your-friend

Python

自然而然,也有许多在线资源是针对 Python 的,这一节中,我仅包括了我所见过的***的那些小抄。

算法

来源: https://www.analyticsvidhya.com/blog/2015/09/full-cheatsheet-machine-learning-algorithms/

Python 基础

来源: https://datasciencefree.com/python.pdf

来源: https://www.datacamp.com/community/tutorials/python-data-science-cheat-sheet-basics#gs.0x1rxEA

Numpy

来源: https://www.dataquest.io/blog/numpy-cheat-sheet/

来源: https://datasciencefree.com/numpy.pdf

来源: https://www.datacamp.com/community/blog/python-numpy-cheat-sheet#gs.Nw3V6CE

来源: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/numpy/numpy.ipynb

Pandas

来源: https://datasciencefree.com/pandas.pdf

来源: https://www.datacamp.com/community/blog/python-pandas-cheat-sheet#gs.S4P4T=U

来源: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/pandas/pandas.ipynb

Matplotlib

来源: https://www.datacamp.com/community/blog/python-matplotlib-cheat-sheet

来源: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/matplotlib.ipynb

Scikit Learn

来源: https://www.datacamp.com/community/blog/scikit-learn-cheat-sheet#gs.fZ2A1Jk

来源: https://peekaboo-vision.blogspot.de/2013/01/machine-learning-cheat-sheet-for-scikit.html

来源: https://github.com/rcompton/ml_cheat_sheet/blob/master/supervised_learning.ipynb

Tensorflow

来源: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/1_Introduction/basic_operations.ipynb

Pytorch

来源: https://github.com/bfortuner/pytorch-cheatsheet

数学

如果你希望了解机器学习,那你就需要彻底地理解统计学(特别是概率)、线性代数和一些微积分。我在本科时辅修了数学,但是我确实需要复习一下了。这些小抄提供了机器学习算法背后你所需要了解的大部分数学知识。

概率

来源: https://www.wzchen.com/s/probability_cheatsheet.pdf

概率小抄 2.0

线性代数

来源: https://minireference.com/static/tutorials/linear_algebra_in_4_pages.pdf

四页内解释线性代数

统计学

来源: https://web.mit.edu/~csvoss/Public/usabo/stats_handout.pdf

统计学小抄

微积分

来源: https://tutorial.math.lamar.edu/getfile.aspx?file=B,41,N

微积分小抄  

机器学习 神经网络 TensorFlow
上一篇:物联网与人工智能结合带来的巨大机遇 下一篇:AI生万物——2018GMIC全球移动互联网大会开幕
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

数据机器学习在故障检测中的应用

本文将简要介绍几种在故障诊断领域广泛应用的机器学习技术及其各自的应用方向,并对每种技术的优缺点进行简单分析。包括:贝叶斯网络(BN),人工神经网络(ANN),支持向量机(SVM)和隐马尔可夫模型(HMM)技术。

交能网 ·  1天前
人工智能如何改造旅游业

旅游业正在慢慢地将人工智能融入到行业当中,并为游客提供个性化定制体验。在人工智能的帮助下,旅游业的业务流程和客户服务都发生了改变。

佚名 ·  1天前
治愈大脑,人机共生,马斯克为“脑机接口”辩护

随着今年年初特斯拉中国工厂正式开始交付特斯拉 model3 型号电动汽车,特斯拉的股值不断飙升,与此同时特斯拉和马斯克也在新闻媒体上赚足了眼球。

学术君 ·  2天前
如何在Kaggle上打比赛,带你进行一次完整流程体验

Kaggle是一个磨练您的机器学习和数据科学技能的好地方,您可以将自己与他人进行比较,并学习新的技术。在这篇文章中,我们利用一个典型的例子,来给大家演示如何参加Kaggle竞赛。

机器学习与数据分析 ·  3天前
一文读懂即将引爆的TinyML:在边缘侧实现超低功耗机器学习

人工智能AI正在加快速度从“云端”走向“边缘”,进入到越来越小的物联网设备中。在终端和边缘侧的微处理器上,实现的机器学习过程,被称为微型机器学习,即TinyML。

物女王 ·  3天前
谷歌发布TyDi QA语料库,涵盖11种不同类型语言

为了鼓励对多语言问答技术的研究,谷歌发布了 TyDi QA,这是一个涵盖了 11 种不同类型语言的问答语料库。

Jonathan Clark ·  4天前
机器学习所需的工程量未来会大大减少 精选

未来,构建 ML 产品将更加有趣,并且这些系统会工作得更好。随着 ML 自动化工具的不断改进,数据科学家和 ML 工程师将把更多的时间花在构建优秀的模型上,而花在与生产级 ML 系统相关的繁琐但必要的任务上的时间会更少。

David LiCause ·  4天前
意料之外 情理之中:解读Gartner 2020年数据科学和机器学习平台魔力象限

最近Gartner发布了数据科学和机器学习(DSML)平台魔力象限报告。数据科学、机器学习和人工智能的市场格局极为分散,竞争激烈且难以理解。Gartner尝试根据明确定义的标准对厂商进行了排名。

佚名 ·  2020-02-21 17:23:21
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载