AI = 神经网络?这8个技术就不是!

作者: 文摘菌 2018-04-21 07:02:37

AI = 神经网络?这8个技术就不是!

大数据文摘作品

编译:傅一洋、丁慧、Aileen

AI热潮中,有关神经网络的声音***。然而,AI远远不止如此。

目前在AI技术领域中,投入资金最多的当属对神经网络的研究了。在众人眼中,神经网络技术貌似就是“程序构造的大脑”(虽然比喻很不准确)。

神经网络的概念早在20世纪40年代就被提出,但直到现在,人们对于神经元及大脑的工作方式仍然知之甚少,最近几年,科研界关于神经网络技术创新的呼声越来越强,渴望重启神经网络的热潮……

其实,除了神经网络以外,AI领域中还包含很多更有趣、更新颖,更有前景的技术,文章中就将这些技术介绍给大家。

1. Knol提取

Knol指信息单元,也就是关键字、词等,Knol提取技术则是从文本中提取关键信息的过程。举个简单的例子:比如“顾名思义,章鱼有8条腿”这句话经过提取后,就变成了这个样子:{“章鱼”:{“腿的数目”:8}}。

我们常用的Google搜索引擎就依赖于这项技术,后续介绍的技术中,很多也都包含了这项技术。

2. 本体构建

本体构建是基于NLP的技术,旨在用软件来构建实体名词的层次结构,这一技术对实现AI会话大有帮助。虽然本体构建表面看起来简单,但事实上构建却并不容易,主要因为事物之间的实际联系比我们所认为的要复杂的多。

例如,利用NLP分析文本来建立实体关系集:

例句:“我的拉布拉多犬刚刚生了一群小狗崽,它们的父亲是只狮子狗,所以它们是拉布拉多贵宾犬(一种混血犬)”这句话被转换后,就变成了:{“小狗崽”:{“可能是”:“拉布拉多贵宾犬”,“拥有/生(have)”:“父亲”},“拉布拉多犬”:{“拥有/生(have)”:“小狗崽”}}。

但是,人类在进行语言表达时,通常不会将所有的关系都陈述出来,比如这句话中,是要通过推断才能得出“我的拉布拉多犬为雌性”这一事实,这就是本体构建的难点所在。

正如此,本体构建技术目前只应用在了***的聊天机器人中。

3. 自定义启发式

启发式是一种用于分类的规则,通常类似于“如果这件物品是红色的”或“如果Bob在家里”这样的条件语句,这些条件语句常伴随某项动作或决定,例如:

如果某物[“成分”]属性中包含“砷”这一元素:则它的[“毒药”]属性为“True”。

对于每个新的信息,都伴随着新的启发式和新的关系,随着新的启发式的建立,又可以对相关的名词产生新的理解。比如:

  • 启发式一:"puppies"(小狗)说明是幼崽(Babies);
  • 启发式二:幼崽(Babies)说明很年轻;

通过以上两个启发式推断出:"puppies"都很年轻。

启发式的难点在于,多数情况下,规则并不会如“If/Then”一样简单。类似于“有些人头发是金色的”这样的语句,就很难用启发式来表述。所以我们有了“认知论”(见下)。

4. 认识论

认识论是本体构建和自定义启发式的结合,并在其中加入了概率特性,通过概率表示名词与任一属性产生关联的可能。比如,用这样本体结构:

  1. {'人':{'性别':{'男':0.49,'女':0.51},'种族':{'亚裔':0.6,'非洲裔':0.14}} 

来表示对一个人性别和种族的判断。同时,概率能帮助识别一些具有多重含义的“混合型”词组,比如像“梅子像是打了激素的葡萄干”这句话中,因为“打了激素”这一词组很大可能地意味着“体积较大”,从而得出,这句话很大可能的意思是“梅子体积比葡萄干大”。

认识论的实现相比本体构建要困难得多。首先,它需要更多的数据;并且,由于其结构的复杂性,很难在确定规则后快速地建立起数据库来实现查找;还有,规则的确定通常基于某项事物在一段文字中被提及的频率,但文字却未必能真实地反映现实情况。

认识论与Asimov提出的“张量流”理论很相似。Google开发的同名TensorFlow系统并不是真正基于张量,而认识论是基于张量的。

5. 自动量规技术

一个量规系统,必定包含相应的评估标准。想象一下,在选购房子时,有房屋面积,位置,价格和风格等因素需要考量,而这些因素未必都是积极的,这就需要有通过衡量取舍来决策。比如,相比价格你更在乎房屋面积,就会宁愿多花几倍的钱来购买大房子。

自评估技术通过你对不同因素的重视程度来确定每项因素的权重,从而提出决策建议。通过这一过程,还可以预测库存变化,推荐产品,实现自动驾驶等。也就是说,大多数神经网络可以实现的功能,自动量规技术都能胜任,尽管需要更长的训练时间,但却有着快几个数量级的决策速度。

6. 矢量差分

矢量差分技术常用于图像分析,也可用于时变数据的处理。通过对目标构建抽象矢量图,将候选对象与待识别目标对象进行比较,从而判断出是否为“***的约会脸型”或“***的买入时机”等。

通常,目标对象之间差异都伴随一个衡量差异程度的量化规则,通过特征的矢量化,将一些“模糊”的概念,简单、清晰的表示出来。

比如,对于人类来讲,我们笼统地认为对称的脸型更具有吸引力,但是对于计算机,就需要精确的计算来判断,而这时,通过30个三角形来进行脸部抽象,比通过完整脸部图像来进行运算对比,能节省很多的计算时间和存储空间。

对于非图像的数据的处理也是可以的。比如股票价格变动、每股收益与保证金的比率等,通过对这些数据矢量化,将其与理想值进行比较,就可以确定一次投资的利好或风险程度。

7. 矩阵卷积

卷积矩阵常用于图像处理领域中的边缘检测和提高对比度等方面,例如,PhotoShop中的许多滤镜都是基于卷积矩阵或叠加卷积(按特定顺序进行多个卷积运算)实现的。

同时,卷积矩阵还可用于处理非图像数据。比如,当使用卷积矩阵对时序向量进行处理时,可以像边缘检测那样,快速地找出模式来,再在最小或***值处查找特定值或范围,从而做出判断。

8. 多视角决策系统

一项决定的做出并不简单。多视角决策系统以一种更民主的形式,多方面地作出决定。

比如,在刚刚房子的例子中,你对于某套房子的看好可能基于并不全面的因素,而之后的一个“这套房子建在悬崖上”的事实(当然,这种压倒性因素可能来自于Knol提取)就会消除你先前的所有好感,让你重新决策。

所以,决策需要通过更全面的因素考量,而多视角决策系统,可以利用两个人的两套标准(比如你和你的配偶)来衡量决策。多视角决策系统还可应用于自动驾驶领域,比如,收集10000个车主的看法来制定新标准等。

写在***——要相信技多不压身

许多人眼中只有一把工具,掉进“我有的就是一把锤子,所以一切都是钉子”的深坑。诸如Recognant这样的公司,在应用神经网络的同时,也同样在应用文章中这些相对冷门的技术,毕竟相比于神经网络硬件系统,

这些软件技术的优势就在于,能针对不同情况进行随时的调整和开发,而无需花费额外的成本。所以,技术面窄,就有可能被一些情况所困住,而技术面越宽,面对问题就越容易迎刃而解。

原文链接:

https://www.linkedin.com/pulse/8-ai-technologies-aint-neural-networks-brandon-wirtz/

【本文是51CTO专栏机构大数据文摘的原创译文,微信公众号“大数据文摘( id: BigDataDigest)”】

     大数据文摘二维码

戳这里,看该作者更多好文

AI 神经网络 技术
上一篇:基于线性网络的语音合成说话人自适应 下一篇:天津多头并举促进智能科技产业落地发展
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

德媒:欧盟拟立法限制滥用人工智能

据德国《法兰克福汇报》网站4月13日报道,人工智能的胜利前进已不可阻挡。新冠疫情尤其让人们关注到这种拥有自我学习能力的系统对医疗体系组织工作的价值。

参考消息 ·  12h前
国内首个!北京拟推进自动驾驶商业化,年内将实现真无人驾驶

乘自动驾驶出租车要付费,无人配送车街上跑,路测拿掉安全员,无人驾驶车上高速……这些即将在北京实现。

南方都市报 ·  13h前
前沿洞察丨无人机送货不迷路的原因竟在这里!

本期前沿洞察为大家带来这些技术:用微观交叉定位,让无人机送货不再找路难;能暴露行动轨迹的智能袜子;基于两束交叉光触发的化学反应实现微米级高精度3D打印......一起来看看吧!

望潮科技 ·  13h前
2021年AI智能摄像机带来的新市场

大流行除了给全球经济带来巨大影响之外,也加速了越来越多的先进技术走向成熟应用,如人工智能(AI)和机器学习(ML),技术时代的到来往往伴随着人类的迫切需求。

蒙光伟 ·  23h前
值得思考:197亿美金,微软2021年的AI转型之路

4月12日,微软宣布将以每股56美元的价格收购语音识别巨头Nuance,出价达到了197亿美元。

东方林语 ·  1天前
人工智能优先战略将从哪里开始?

人工智能可以为企业带来竞争优势,并释放难以获得的巨大商机。因此,人们需要了解制定有效的人工智能优先策略的6个步骤。

李睿 ·  1天前
自动驾驶落地环卫领域,直击痛点、前景可期

自动驾驶落地环卫领域,不仅具备广泛需求和前景市场,同时还拥有较低的门槛和显著价值,两者可谓相辅相成。

智能制造网 ·  1天前
为什么人工智能是可再生能源电网复原力的关键

各界呼吁政府在电网基础设施上投入资金,升级集中式发电源的长输电线路,尝试利用过去的技术来解决当今的问题。但是现在已经有了更好、更具前瞻性的替代方案:利用分散式可再生能源的人工智能(AI)。

世界经济论坛 ·  1天前
Copyright©2005-2021 51CTO.COM 版权所有 未经许可 请勿转载