关于TensorFlow简单例子

作者: 佚名 2018-02-24 14:00:42

https://s1.51cto.com/oss/201802/24/2c694b2c18d508621127d14454cc82af.png

在本文中,我们将看一些 TensorFlow 的例子,并从中感受到在定义张量tensor和使用张量做数学计算方面有多么容易,我还会举些别的机器学习相关的例子。

TensorFlow 是什么?

TensorFlow 是 Google 为了解决复杂的数学计算耗时过久的问题而开发的一个库。

事实上,TensorFlow 能干许多事。比如:

  • 求解复杂数学表达式
  • 机器学习技术。你往其中输入一组数据样本用以训练,接着给出另一组数据样本基于训练的数据而预测结果。这就是人工智能了!
  • 支持 GPU 。你可以使用 GPU(图像处理单元)替代 CPU 以更快的运算。TensorFlow 有两个版本: CPU 版本和 GPU 版本。

开始写例子前,需要了解一些基本知识。

什么是张量?

张量tensor是 TensorFlow 使用的主要的数据块,它类似于变量,TensorFlow 使用它来处理数据。张量拥有维度和类型的属性。

维度指张量的行和列数,读到后面你就知道了,我们可以定义一维张量、二维张量和三维张量。

类型指张量元素的数据类型。

定义一维张量

可以这样来定义一个张量:创建一个 NumPy 数组(LCTT 译注:NumPy 系统是 Python 的一种开源数字扩展,包含一个强大的 N 维数组对象 Array,用来存储和处理大型矩阵 )或者一个 Python 列表 ,然后使用 tf_convert_to_tensor 函数将其转化成张量。

可以像下面这样,使用 NumPy 创建一个数组:

  1. import numpy as np arr = np.array([1, 5.5, 3, 15, 20])
  2. arr = np.array([1, 5.5, 3, 15, 20])

运行结果显示了这个数组的维度和形状。

  1. import numpy as np
  2. arr = np.array([1, 5.5, 3, 15, 20])
  3. print(arr)
  4. print(arr.ndim)
  5. print(arr.shape)
  6. print(arr.dtype)

它和 Python 列表很像,但是在这里,元素之间没有逗号。

现在使用 tf_convert_to_tensor 函数把这个数组转化为张量。

  1. import numpy as np
  2. import tensorflow as tf
  3. arr = np.array([1, 5.5, 3, 15, 20])
  4. tensor = tf.convert_to_tensor(arr,tf.float64)
  5. print(tensor)

这次的运行结果显示了张量具体的含义,但是不会展示出张量元素。

要想看到张量元素,需要像下面这样,运行一个会话:

  1. import numpy as np
  2. import tensorflow as tf
  3. arr = np.array([1, 5.5, 3, 15, 20])
  4. tensor = tf.convert_to_tensor(arr,tf.float64)
  5. sess = tf.Session()
  6. print(sess.run(tensor))
  7. print(sess.run(tensor[1]))

定义二维张量

定义二维张量,其方法和定义一维张量是一样的,但要这样来定义数组:

  1. arr = np.array([(1, 5.5, 3, 15, 20),(10, 20, 30, 40, 50), (60, 70, 80, 90, 100)])

接着转化为张量:

  1. import numpy as np
  2. import tensorflow as tf
  3. arr = np.array([(1, 5.5, 3, 15, 20),(10, 20, 30, 40, 50), (60, 70, 80, 90, 100)])
  4. tensor = tf.convert_to_tensor(arr)
  5. sess = tf.Session()
  6. print(sess.run(tensor))

现在你应该知道怎么定义张量了,那么,怎么在张量之间跑数学运算呢?

在张量上进行数学运算

假设我们有以下两个数组:

  1. arr1 = np.array([(1,2,3),(4,5,6)])
  2. arr2 = np.array([(7,8,9),(10,11,12)])

利用 TenserFlow ,你能做许多数学运算。现在我们需要对这两个数组求和。

使用加法函数来求和:

  1. import numpy as np
  2. import tensorflow as tf
  3. arr1 = np.array([(1,2,3),(4,5,6)])
  4. arr2 = np.array([(7,8,9),(10,11,12)])
  5. arr3 = tf.add(arr1,arr2)
  6. sess = tf.Session()
  7. tensor = sess.run(arr3)
  8. print(tensor)

也可以把数组相乘:

  1. import numpy as np
  2. import tensorflow as tf
  3. arr1 = np.array([(1,2,3),(4,5,6)])
  4. arr2 = np.array([(7,8,9),(10,11,12)])
  5. arr3 = tf.multiply(arr1,arr2)
  6. sess = tf.Session()
  7. tensor = sess.run(arr3)
  8. print(tensor)

现在你知道了吧。

三维张量

我们已经知道了怎么使用一维张量和二维张量,现在,来看一下三维张量吧,不过这次我们不用数字了,而是用一张 RGB 图片。在这张图片上,每一块像素都由 x、y、z 组合表示。

这些组合形成了图片的宽度、高度以及颜色深度。

首先使用 matplotlib 库导入一张图片。如果你的系统中没有 matplotlib ,可以 使用 pip来安装它。

将图片放在 Python 文件的同一目录下,接着使用 matplotlib 导入图片:

  1. import matplotlib.image as img
  2. myfile = "likegeeks.png"
  3. myimage = img.imread(myfile)
  4. print(myimage.ndim)
  5. print(myimage.shape)

从运行结果中,你应该能看到,这张三维图片的宽为 150 、高为 150 、颜色深度为 3 。

你还可以查看这张图片:

  1. import matplotlib.image as img
  2. import matplotlib.pyplot as plot
  3. myfile = "likegeeks.png"
  4. myimage = img.imread(myfile)
  5. plot.imshow(myimage)
  6. plot.show()

真酷!

那怎么使用 TensorFlow 处理图片呢?超级容易。

使用 TensorFlow 生成或裁剪图片

首先,向一个占位符赋值:

  1. myimage = tf.placeholder("int32",[None,None,3])

使用裁剪操作来裁剪图像:

  1. cropped = tf.slice(myimage,[10,0,0],[16,-1,-1])

最后,运行这个会话:

  1. result = sess.run(cropped, feed\_dict={slice: myimage})

然后,你就能看到使用 matplotlib 处理过的图像了。

这是整段代码:

  1. import tensorflow as tf
  2. import matplotlib.image as img
  3. import matplotlib.pyplot as plot
  4. myfile = "likegeeks.png"
  5. myimage = img.imread(myfile)
  6. slice = tf.placeholder("int32",[None,None,3])
  7. cropped = tf.slice(myimage,[10,0,0],[16,-1,-1])
  8. sess = tf.Session()
  9. result = sess.run(cropped, feed_dict={slice: myimage})
  10. plot.imshow(result)
  11. plot.show()

是不是很神奇?

使用 TensorFlow 改变图像

在本例中,我们会使用 TensorFlow 做一下简单的转换。

首先,指定待处理的图像,并初始化 TensorFlow 变量值:

  1. myfile = "likegeeks.png"
  2. myimage = img.imread(myfile)
  3. image = tf.Variable(myimage,name='image')
  4. vars = tf.global_variables_initializer()

然后调用 transpose 函数转换,这个函数用来翻转输入网格的 0 轴和 1 轴。

  1. sess = tf.Session()
  2. flipped = tf.transpose(image, perm=[1,0,2])
  3. sess.run(vars)
  4. result=sess.run(flipped)

接着你就能看到使用 matplotlib 处理过的图像了。

  1. import tensorflow as tf
  2. import matplotlib.image as img
  3. import matplotlib.pyplot as plot
  4. myfile = "likegeeks.png"
  5. myimage = img.imread(myfile)
  6. image = tf.Variable(myimage,name='image')
  7. vars = tf.global_variables_initializer()
  8. sess = tf.Session()
  9. flipped = tf.transpose(image, perm=[1,0,2])
  10. sess.run(vars)
  11. result=sess.run(flipped)
  12. plot.imshow(result)
  13. plot.show()

以上例子都向你表明了使用 TensorFlow 有多么容易。

TensorFlow 数学计算 机器学习
上一篇:Bespin Global:借力AI技术 打造云原生的智能化运维方式 下一篇:MIT评出全球十大突破性技术,阿里巴巴正研究其中4项
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

高位截瘫患者重新行走:靠意念指挥外骨骼,法国脑机接口新突破

依靠介入头部的 2 个传感器,法国里昂的一名瘫痪男子 Thibault 实现了操控外骨骼装备来助力行走。

孙滔 ·  21h前
2008 年预测 2020 年生活方式:基本都实现了

美国皮尤研究中心曾在 2008 年预测 2020 年的生活方式,目前来看,该研究的预测基本已经实现。而对于未来 10 年,也就是 2030 年左右人们的生活,在 2017 年底的世界经济论坛上,800 多名信息和通讯技术领域的技术高管和专家给出了如下预测。

佚名 ·  21h前
机器学习的正则化是什么意思?

正则化的好处是当特征很多时,每一个特征都会对预测y贡献一份合适的力量;所以说,使用正则化的目的就是为了防止过拟合。

佚名 ·  21h前
为什么我的CV模型不好用?没想到原因竟如此简单……

机器学习专家 Adam Geitgey 近日发布了一篇文章探讨了这一简单却又让很多人头痛的问题,并分享了他为解决这一问题编写的自动图像旋转程序。

机器之心 ·  22h前
机器学习与预测分析的区别在何处? 精选

如今,认知学习的应用比以往更为普遍。通常意义上讲,认知学习与认知计算就是涉及AI技术与信号处理的操作过程或技术平台。

读芯术 ·  1天前
大盘点:8月Github上7个值得关注的数据科学项目

本文带你来看看GitHub上创建于2019年8月的7个数据科学项目。笔者所选项目的范围十分广泛,涉及从机器学习到强化学习的诸多领域。

读芯术 ·  1天前
非监督学习最强攻略

本次主要讲解的内容是机器学习里的非监督学习经典原理与算法,非监督,也就是没有target(标签)的算法模型。

SAMshare ·  1天前
PyTorch终于能用上谷歌云TPU,推理性能提升4倍,该如何薅羊毛?

Facebook在PyTorch开发者大会上正式推出了PyTorch 1.3,并宣布了对谷歌云TPU的全面支持,而且还可以在Colab中调用云TPU。

晓查 ·  1天前
Copyright©2005-2019 51CTO.COM 版权所有 未经许可 请勿转载