基于face_recognition实现人脸识别

作者: 强哥 2018-01-31 13:09:35

上一篇中我们实现了检测照片中的人脸并标出人脸特征点(鼻子,眼睛,眉毛等),这一篇我们将在上一篇的基础上,进一步实现人脸识别,告诉你照片里的人是谁。

准备工作

我们的人脸识别基于face_recognition库。face_recognition基于dlib实现,用深度学习训练数据,模型准确率高达99.38%。在开始我们的工作前,我们先安装face_recognition

  1. pip install face_recognition 

人脸数字化

人脸识别的***步是检测照片中的人脸区域,然后将人脸的图像数据转换成一个长度为128的向量,这128个数据代表了人脸的128个特征指标,如下所示

对于每一张已知人脸,生成这样的一个128位的向量。对于一张未知人脸,将它的128位向量和所有已知人脸的128位向量一一比对,找到相似度***的那一个,即找出了未知人脸对应的人。

图片数据

我们准备了两张照片,分别是凯特王妃和威廉王子的单人照,分别存成catherine.jpg和william.jpg,这两张照片中的人脸作为我们的已知人脸

我们的目标是在下面的合影中识别出两人的脸并在图中标出各自的名字。下图存成unknown.jpg

代码实现

接下来开始我们的编程工作

  1. import cv2 
  2.  
  3. import face_recognitionnames = [     
  4.  
  5.     "catherine"
  6.  
  7.     "william"
  8.  

首先我们定义了标签集,存在names数组中。

标签名字也是我们图片的文件名。

  1. images = [] 
  2.  
  3. for name in names: 
  4.  
  5.     filename = name + ".jpg" 
  6.  
  7.     image = face_recognition.load_image_file(filename)  
  8.  
  9.     images.append(image) 
  10.  
  11. unknown_image = face_recognition.load_image_file("unknown.jpg"

调用face_recognition.load_image_file从图片中读取数据。

这里读取了包含已知人脸和未知人脸的图片的数据,未知人脸的图片就是上面的合影图片unknown.jpg。

  1. face_encodings = [] 
  2.  
  3. for image in images: 
  4.  
  5.     encoding = face_recognition.face_encodings(image)[0]  
  6.  
  7.     face_encodings.append(encoding) 
  8.  
  9. unknown_face_encodings = face_recognition.face_encodings(unknown_image) 

face_recognition.face_encodings会返回图片中的所有的人脸的128位向量。单人照片只有一张人脸,所以face_recognition.face_encodings(image)[0]只取***个元素。合影图片中包含了2张人脸,所以unknown_face_encodings包含2个128位向量。

  1. face_locations = face_recognition.face_locations(unknown_image) 
  2.  
  3. for i in range(len(unknown_face_encodings)):     
  4.  
  5.     unknown_encoding = unknown_face_encodings[i]      
  6.  
  7.     face_location = face_locations[i]      
  8.  
  9.     topright, bottom, left = face_location      
  10.  
  11.     cv2.rectangle(unknown_image, (lefttop), (right, bottom), (0, 255, 0), 2)      
  12.  
  13.     results = face_recognition.compare_faces(face_encodings, unknown_encoding)      
  14.  
  15.     for j in range(len(results)):          
  16.  
  17.         if results[j]:              
  18.  
  19.             name = names[j]              
  20.  
  21.             cv2.putText(unknown_image, name, (left-10, top-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) 
  22.  
  23.  
  24.  
  25. unknown_image_rgb = cv2.cvtColor(unknown_image, cv2.COLOR_BGR2RGB) 
  26.  
  27. cv2.imshow("Output", unknown_image_rgb) 
  28.  
  29. cv2.waitKey(0) 

face_locations存了每张脸的位置信息。

在循环中我们调用cv2.rectangle框出了检测到的每张脸。

face_recognition.compare_faces将已知人脸的128位向量和每张未知人脸的128位向量做比较,结果存入results数组中。results数组中的每一个元素都是True或者False,长度和人脸个数相等。results中的每个元素都和已知人脸一一对应,在某一个位置处的元素为True,表示未知人脸被识别成这张已知人脸。

对识别出来的每张人脸,我们调用cv2.putText在图上标注标签。

以上是代码的全部。

测试

令人兴奋的时刻又来到了! 我们来检验一下我们的成果。

运行上面的程序,可以看到下面的结果

威廉王子和凯特王妃的人脸都被准确地识别出来。绿色的框框出了人脸区域,框的上方标注了识别到的人的名字。

至此,我们成功地实现了人脸识别。

后续不定期的更新一些图像处理方面其他有趣的应用,例如抠图、实现手绘效果、二维码识别、验证码识别,等等。

Python face_recognition 人脸识别
上一篇:当人工智能碰上新零售 会爆发怎样的火花? 下一篇:我们对比了GitHub上8800个开源机器学习项目,并选出了其中的Top30
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

新老问题叠加,个人信息保护面临新挑战

快递面单隐私泄露、APP过度索权、违规收集使用个人信息等问题仍突出,人脸信息泄露问题又来了。业内人士认为,新老问题叠加,使得个人信息保护面临新挑战。因此,必须下大力气解决个人信息保护面临的突出问题,守好个人信息安全防线

中国网 ·  15h前
Python开发者宝典:10个有用的机器学习实践!

您可能是名数据科学家,但本质上仍是开发者。这意味着您的编程技巧应该很熟练。请遵循以下10条提示,确保快速交付没有错误的机器学习解决方案。

布加迪 ·  2020-05-29 07:00:00
“人脸识别”已衍生出“性格识别”,科技向善还要多久?

近日,《科学报告》期刊上刊登了一篇有关于人脸识别的新技术,俄罗斯研究团队开发了一款新 AI,可“仅凭一张自拍照片辨别个人性格”。

缙霄 ·  2020-05-27 09:36:14
GitHub近10万星:印度小哥用Python和Java实现所有AI算法

今天两个算法实现的项目又登上了GitHub热榜,每逢招聘季必上榜?此前,这两个项目曾多次登顶,分别用Python和Java实现了面试中常考的算法,AI行业就业形势日趋严峻,而算法岗更是竞争激烈,是时候复习一下基本功了!

佚名 ·  2020-05-19 14:27:10
微软计算机视觉创研论坛首日干货:3项前沿检测技术解读

5月15日消息,昨日上午9点,微软亚洲研究院创研论坛CVPR 2020论文分享会线上开幕。

董温淑 ·  2020-05-15 14:25:19
再也不怕别人动电脑了!用Python实时监控

最近突然有个奇妙的想法,就是当我对着电脑屏幕的时候,电脑会先识别屏幕上的人脸是否是本人,如果识别是本人的话需要回答电脑说的暗语,答对了才会解锁并且有三次机会。

佚名 ·  2020-05-07 09:05:22
反人脸识别技术层出不穷 刷脸是否还安全?

当今应用较为成熟且广泛的智能技术有哪些?人脸识别算是一例。《麻省理工科技评论》曾将其列为2017年“十大突破性技术”之一。

佚名 ·  2020-04-29 09:34:54
这就是人脸和图像识别越来越重要的原因

今天的人脸和图像识别被认为是所有生物特征测量中最自然的。无论是机场、办公室,甚至是学校,人脸和图像识别都可以在很多地方进行。

Cassie ·  2020-04-26 16:05:01
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载