基于face_recognition实现人脸识别

作者: 强哥 2018-01-31 13:09:35

上一篇中我们实现了检测照片中的人脸并标出人脸特征点(鼻子,眼睛,眉毛等),这一篇我们将在上一篇的基础上,进一步实现人脸识别,告诉你照片里的人是谁。

准备工作

我们的人脸识别基于face_recognition库。face_recognition基于dlib实现,用深度学习训练数据,模型准确率高达99.38%。在开始我们的工作前,我们先安装face_recognition

  1. pip install face_recognition 

人脸数字化

人脸识别的***步是检测照片中的人脸区域,然后将人脸的图像数据转换成一个长度为128的向量,这128个数据代表了人脸的128个特征指标,如下所示

对于每一张已知人脸,生成这样的一个128位的向量。对于一张未知人脸,将它的128位向量和所有已知人脸的128位向量一一比对,找到相似度***的那一个,即找出了未知人脸对应的人。

图片数据

我们准备了两张照片,分别是凯特王妃和威廉王子的单人照,分别存成catherine.jpg和william.jpg,这两张照片中的人脸作为我们的已知人脸

我们的目标是在下面的合影中识别出两人的脸并在图中标出各自的名字。下图存成unknown.jpg

代码实现

接下来开始我们的编程工作

  1. import cv2 
  2.  
  3. import face_recognitionnames = [     
  4.  
  5.     "catherine"
  6.  
  7.     "william"
  8.  

首先我们定义了标签集,存在names数组中。

标签名字也是我们图片的文件名。

  1. images = [] 
  2.  
  3. for name in names: 
  4.  
  5.     filename = name + ".jpg" 
  6.  
  7.     image = face_recognition.load_image_file(filename)  
  8.  
  9.     images.append(image) 
  10.  
  11. unknown_image = face_recognition.load_image_file("unknown.jpg"

调用face_recognition.load_image_file从图片中读取数据。

这里读取了包含已知人脸和未知人脸的图片的数据,未知人脸的图片就是上面的合影图片unknown.jpg。

  1. face_encodings = [] 
  2.  
  3. for image in images: 
  4.  
  5.     encoding = face_recognition.face_encodings(image)[0]  
  6.  
  7.     face_encodings.append(encoding) 
  8.  
  9. unknown_face_encodings = face_recognition.face_encodings(unknown_image) 

face_recognition.face_encodings会返回图片中的所有的人脸的128位向量。单人照片只有一张人脸,所以face_recognition.face_encodings(image)[0]只取***个元素。合影图片中包含了2张人脸,所以unknown_face_encodings包含2个128位向量。

  1. face_locations = face_recognition.face_locations(unknown_image) 
  2.  
  3. for i in range(len(unknown_face_encodings)):     
  4.  
  5.     unknown_encoding = unknown_face_encodings[i]      
  6.  
  7.     face_location = face_locations[i]      
  8.  
  9.     topright, bottom, left = face_location      
  10.  
  11.     cv2.rectangle(unknown_image, (lefttop), (right, bottom), (0, 255, 0), 2)      
  12.  
  13.     results = face_recognition.compare_faces(face_encodings, unknown_encoding)      
  14.  
  15.     for j in range(len(results)):          
  16.  
  17.         if results[j]:              
  18.  
  19.             name = names[j]              
  20.  
  21.             cv2.putText(unknown_image, name, (left-10, top-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) 
  22.  
  23.  
  24.  
  25. unknown_image_rgb = cv2.cvtColor(unknown_image, cv2.COLOR_BGR2RGB) 
  26.  
  27. cv2.imshow("Output", unknown_image_rgb) 
  28.  
  29. cv2.waitKey(0) 

face_locations存了每张脸的位置信息。

在循环中我们调用cv2.rectangle框出了检测到的每张脸。

face_recognition.compare_faces将已知人脸的128位向量和每张未知人脸的128位向量做比较,结果存入results数组中。results数组中的每一个元素都是True或者False,长度和人脸个数相等。results中的每个元素都和已知人脸一一对应,在某一个位置处的元素为True,表示未知人脸被识别成这张已知人脸。

对识别出来的每张人脸,我们调用cv2.putText在图上标注标签。

以上是代码的全部。

测试

令人兴奋的时刻又来到了! 我们来检验一下我们的成果。

运行上面的程序,可以看到下面的结果

威廉王子和凯特王妃的人脸都被准确地识别出来。绿色的框框出了人脸区域,框的上方标注了识别到的人的名字。

至此,我们成功地实现了人脸识别。

后续不定期的更新一些图像处理方面其他有趣的应用,例如抠图、实现手绘效果、二维码识别、验证码识别,等等。

Python face_recognition 人脸识别
上一篇:当人工智能碰上新零售 会爆发怎样的火花? 下一篇:我们对比了GitHub上8800个开源机器学习项目,并选出了其中的Top30
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

CV内卷!心理学家学会人脸识别,训练600万视频区分世界各地表情

机器学习又跨界发Nature啦!美国东北大学的研究员将研究成果发表在Nature上,探究世界各地人类的表情有什么不一样?结果相关率只有30%。

佚名 ·  2021-05-31 13:19:55
刷脸时代真的来了,你有参与吗?

数据显示,预计未来几年,人脸识别市场规模将保持年均20%左右的高速增长,到2022 年,全球人脸识别市场规模将达75.95亿美元。

知情达理晚风r1 ·  2021-05-18 11:14:55
NLP入门系列之自然语言处理

本章为自然语言处理提供了一个高层次的介绍。解释了自然语言处理是什么,最常见的自然语言处理应用是哪些以及开发自然语言处理应用程序的基本方法是什么。

AI Publishing ·  2021-05-18 07:15:37
人脸识别太简单,AI还能识别你的手指行为,惊悚至极

面部识别并不是我们使用计算机识别唯一可怕的事情。如果人工智能可以看到我们敲击键盘,触摸屏幕的视频,并准确推断我们正在使用的应用程序和我们正在键入的内容,会怎么样?

风中小学生 ·  2021-05-16 15:32:34
处理人工智能任务必须知道的11个Python库

Python对数据科学如此重要的原因之一是它海量的数据分析和可视化库。在本文中,我们讨论了最受欢迎的一些。

Huangwei AI ·  2021-05-13 13:07:35
神奇的人脸识别:为啥眼熟之人戴口罩、墨镜还是能认出来?

佚名 ·  2021-05-10 11:11:36
人脸识别之人脸关键特征识别

当下人脸识别在生活中被应用得愈加广泛。那么,人脸识别是如何对人脸关键特征进行识别的?在前面文章里,作者对人脸识别的图像预处理进行了介绍。本篇文章中,作者则介绍了人脸识别的关键特征识别,让我们一起来看一下。

佚名 ·  2021-05-10 11:08:00
如何用Python开发QQ机器人

虽然该文最终是达到以python开发mirai机器人的目的,但起步教程,尤其是环境配置上仍然有大量的相同操作,对其他编程语言仍有借鉴之处。

佚名 ·  2021-05-07 13:20:39
Copyright©2005-2021 51CTO.COM 版权所有 未经许可 请勿转载