50行Python代码实现人脸检测

作者: 强哥 2018-01-23 09:17:22

50行Python代码实现人脸检测

现在的人脸识别技术已经得到了非常广泛的应用,支付领域、身份验证、美颜相机里都有它的应用。用iPhone的同学们应该对下面的功能比较熟悉

50行Python代码实现人脸检测

iPhone的照片中有一个“人物”的功能,能够将照片里的人脸识别出来并分类,背后的原理也是人脸识别技术。

这篇文章主要介绍怎样用Python实现人脸检测。人脸检测是人脸识别的基础。人脸检测的目的是识别出照片里的人脸并定位面部特征点,人脸识别是在人脸检测的基础上进一步告诉你这个人是谁。

好了,介绍就到这里。接下来,开始准备我们的环境。

准备工作

本文的人脸检测基于dlib,dlib依赖Boost和cmake,所以首先需要安装这些包,以Ubuntu为例:

  1. $ sudo apt-get install build-essential cmake 
  2.  
  3. $ sudo apt-get install libgtk-3-dev 
  4.  
  5. $ sudo apt-get install libboost-all-dev 

我们的程序中还用到numpy,opencv,所以也需要安装这些库:

  1. $ pip install numpy 
  2.  
  3. $ pip install scipy 
  4.  
  5. $ pip install opencv-python 
  6.  
  7. $ pip install dlib 

人脸检测基于事先训练好的模型数据,从这里可以下到模型数据

  1. https://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 

下载到本地路径后解压,记下解压后的文件路径,程序中会用到。

dlib的人脸特征点

上面下载的模型数据是用来估计人脸上68个特征点(x, y)的坐标位置,这68个坐标点的位置如下图所示:

我们的程序将包含两个步骤:

***步,在照片中检测人脸的区域

第二部,在检测到的人脸区域中,进一步检测器官(眼睛、鼻子、嘴巴、下巴、眉毛)

人脸检测代码

我们先来定义几个工具函数:

  1. def rect_to_bb(rect): 
  2.  
  3.     x = rect.left() 
  4.  
  5.     y = rect.top() 
  6.  
  7.     w = rect.right() - x  
  8.  
  9.     h = rect.bottom() - y      
  10.  
  11.    return (x, y, w, h) 

这个函数里的rect是dlib脸部区域检测的输出。这里将rect转换成一个序列,序列的内容是矩形区域的边界信息。

  1. def shape_to_np(shape, dtype="int"): 
  2.  
  3.     coords = np.zeros((68, 2), dtype=dtype)     
  4.  
  5.     for i in range(0, 68): 
  6.  
  7.             coords[i] = (shape.part(i).x, shape.part(i).y)     
  8.  
  9.    return coords 

这个函数里的shape是dlib脸部特征检测的输出,一个shape里包含了前面说到的脸部特征的68个点。这个函数将shape转换成Numpy array,为方便后续处理。

  1. def  resize(image, width=1200): 
  2.  
  3.     r = width * 1.0 / image.shape[1] 
  4.  
  5.     dim = (width, int(image.shape[0] * r))  
  6.  
  7.     resized = cv2.resize(image, dim, interpolation=cv2.INTER_AREA)     
  8.  
  9.     return resized 

这个函数里的image就是我们要检测的图片。在人脸检测程序的***,我们会显示检测的结果图片来验证,这里做resize是为了避免图片过大,超出屏幕范围。

接下来,开始我们的主程序部分

  1. import sys import numpy as np 
  2.  
  3. import dlib import cv2  
  4.  
  5. if len(sys.argv) < 2:     
  6.  
  7.     print "Usage: %s <image file>" % sys.argv[0] 
  8.  
  9.     sys.exit(1) 
  10.  
  11. image_file = sys.argv[1] 
  12.  
  13. detector = dlib.get_frontal_face_detector() 
  14.  
  15. predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat"

我们从sys.argv[1]参数中读取要检测人脸的图片,接下来初始化人脸区域检测的detector和人脸特征检测的predictor。shape_predictor中的参数就是我们之前解压后的文件的路径。

  1. image = cv2.imread(image_file) 
  2.  
  3. image = resize(image, width=1200) 
  4.  
  5. gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 
  6.  
  7. rects = detector(gray, 1) 

在检测特征区域前,我们先要检测人脸区域。这段代码调用opencv加载图片,resize到合适的大小,转成灰度图,***用detector检测脸部区域。因为一张照片可能包含多张脸,所以这里得到的是一个包含多张脸的信息的数组rects。

  1. for (i, rect) in enumerate(rects): 
  2.  
  3.     shape = predictor(gray, rect) 
  4.  
  5.     shape = shape_to_np(shape) 
  6.  
  7.     (x, y, w, h) = rect_to_bb(rect) 
  8.  
  9.     cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2) 
  10.  
  11.     cv2.putText(image, "Face #{}".format(i + 1), (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)     
  12.  
  13. for (x, y) in shape: 
  14.  
  15.             cv2.circle(image, (x, y), 2, (0, 0, 255), -1)  
  16.  
  17. cv2.imshow("Output", image) 
  18.  
  19. cv2.waitKey(0) 

对于每一张检测到的脸,我们进一步检测脸部的特征(鼻子、眼睛、眉毛等)。对于脸部区域,我们用绿色的框在照片上标出;对于脸部特征,我们用红色的点标出来。

***我们把加了检测标识的照片显示出来,waitKey(0)表示按任意键可退出程序。

以上是我们程序的全部

测试

接下来是令人兴奋的时刻,检验我们结果的时刻到来了。

下面是原图

下面是程序识别的结果

可以看到脸部区域被绿色的长方形框起来了,脸上的特征(鼻子,眼睛等)被红色点点标识出来了。

是不是很简单?

Python 人脸识别
上一篇:邬剑:nEqual助力企业打造超级用户体验的智慧商业 下一篇:主搜索与店铺内搜索联合优化的初步探索与尝试
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

处理人工智能任务必须知道的11个Python库

Python对数据科学如此重要的原因之一是它海量的数据分析和可视化库。在本文中,我们讨论了最受欢迎的一些。

Huangwei AI ·  2天前
神奇的人脸识别:为啥眼熟之人戴口罩、墨镜还是能认出来?

佚名 ·  2021-05-10 11:11:36
人脸识别之人脸关键特征识别

当下人脸识别在生活中被应用得愈加广泛。那么,人脸识别是如何对人脸关键特征进行识别的?在前面文章里,作者对人脸识别的图像预处理进行了介绍。本篇文章中,作者则介绍了人脸识别的关键特征识别,让我们一起来看一下。

佚名 ·  2021-05-10 11:08:00
如何用Python开发QQ机器人

虽然该文最终是达到以python开发mirai机器人的目的,但起步教程,尤其是环境配置上仍然有大量的相同操作,对其他编程语言仍有借鉴之处。

佚名 ·  2021-05-07 13:20:39
人工智能来了,自动化是不是该瑟瑟发抖了?

在机器时代,有“机器吃人”的愤怒控诉;在自动化的时代,轮到机械化慨叹过去的好时光了。在人工智能的时代,是不是该轮到自动化瑟瑟发抖了?

晨枫老苑 ·  2021-05-02 23:13:35
人脸识别国标拟规定:不得强制刷脸、预测偏好 不对14周岁以下人脸识别

中国网4月25日讯 近日,《信息安全技术人脸识别数据安全要求》国家标准(以下简称《国标要求》)征求意见稿面向社会公开征求意见。《国标要求》明确,收集人脸识别数据时应征得数据主体明示同意,不得利用人脸识别数据评估或预测数据主体工作表现、经济状况、健康状况、偏好、兴趣等情况。

中国网 ·  2021-04-27 16:53:08
2021年访问控制市场与技术发展趋势

与市场研究公司一样,全球几家主要的门禁控制制造商也列出了他们认为的2021年最大的行业发展趋势。在本文中,我们对这些预测的一些最重要方面进行了总结。

佚名 ·  2021-04-27 10:51:13
为什么Python是机器学习的理想选择?

Python 人工智能项目在各种形式和规模的公司中变得非常流行。以下是 Python 语言非常适合 ML 开发的原因。

佚名 ·  2021-04-25 10:26:34
Copyright©2005-2021 51CTO.COM 版权所有 未经许可 请勿转载