食品工业中的人工智能:赋予农民决策权

作者: 佚名 2017-11-28 10:43:00

大家认为人工智能是否可以优化食物系统?从精准耕作到个性化营养,在农业、食品生产和食品消费方面有许多潜在的技术应用。但是,技术性能、用户的接受程度以及该技术的实际应用仍然构成挑战。Chiara Cecchini调查了这一细分领域的主要挑战和机遇,探索如何利用人造大脑的使用来确保健康生活并促进幸福。

食品工业中的人工智能:赋予农民决策权

斯坦福大学发起的"人工智能百年研究"表明,人工神经网络现在可以通过大数据集和大规模计算(深度学习)进行训练,从而推动数据驱动型解决方案的发展,进而改善决策。此外,人工神经网络是受生物脑神经网络启发而来的计算系统。人类的选择是基于有限的知识,这种做法增加了风险而且效率低下。人工智能提供了机会,可以针对复杂任务模仿人类的认知能力,通过这些人工神经元网络,有可能能够降低风险并增强积极的成果。

农业、健康和营养早就已经在政治和社会两个层面上都占据了不同的领域。现在,人们普遍认识到,在全球范围内,最重要的任务之一是提供在数量和质量上都充足的食物,以可持续的方式养育不断增长的世界人口。世界经济论坛(World Economic Forum)认为,为了做到这一点,迫切需要促进"更为智慧的农业增长。"

安装在农场、田野或者运输途中的传感器生成的数据提供了***丰富的信息。因此,将人工智能应用于农业有可能会优化并提高产量,改善农业规划,优化资源并极大地防止浪费。据估计,到2020年,将有超过7500万台农用连接设备投入使用,而到2050年,每个农场预计平均每天会产生410万个数据点。

在养殖业中有几个例子:从精准除草和采摘到疾病识别,人工智能有可能为耕作系统开拓出新的情景。

康奈尔大学的一组研究人员最近发表了一项研究,解释他们如何建立并训练一个神经网络,该神经网络能够以98%的准确率鉴别木薯叶片上的褐斑病。CAMP3部署和管理无线传感器网络,该网络被用于收集田间图像,并在早期自动发现病虫害。

为了进行精准的除草和采摘,Abundant Robotics最近筹集了1000万美元用于建造一个能够采摘合适苹果的机器人。另一个例子是Vision Robotics,这家圣地亚哥的公司开发的机器人能够在果园中移动并采摘橘子。这些类型的解决方案也许可以为农民节省数百万美元的劳动力成本和水果损坏成本,每年减少13亿吨的粮食损失(约折合7500亿美元)。

人工智能也有积极影响土壤健康的潜力。每一汤匙的土壤中含有数以百万计的微生物,为植物形成一个生态系统,Trace Genomics等公司能够从土壤中提取DNA,分析其微生物群落,并基于人工智能提供建议,以***限度地提高土壤的健康程度和作物产量。

全球粮食安全是人类面临的最紧迫的问题之一,农业生产对实现这一目标至关重要。植物和动物疾病、环境退化和气候变化都是影响全球人口的迫切问题。现在那些从事人工智能和机器学习的人都希望能够塑造一场新的绿色革命:我们越早开始研究它,我们所有的人就会从中获得越大的价值。

人工智能 农业 神经网络
上一篇:带你深入剖析递归神经网络 下一篇:如何用TensorFlow在安卓设备上实现深度学习推断
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

5G风头正盛 人工智能要被“冷落”了?

2018年,5G的热度开始迅速提升。当年开始,我国展开了5G基站建设,并在全国十多个城市开始进行5G测试和试运营。到了2019年,随着各国纷纷宣布开启5G商用,5G的热度再次攀升,成为了通信、科技领域当之无愧的“热点王”。相比之下,人工智能似乎都要稍逊一筹。

佚名 ·  1天前
破解机器学习的误区——常见机器学习神话究竟从何而来?

Forrester Research最近发布了一份名为“ 粉碎机器学习的七个神话”的报告。在其中,作者警告说:“不幸的是,一些对机器学习项目做出重要决策的企业领导者,普遍存在机器学习的误解。”

CDA数据分析师 ·  1天前
清华本科生开发强化学习平台「天授」:千行代码实现,刚刚开源

就在最近,一个简洁、轻巧、快速的深度强化学习平台,完全基于Pytorch,在Github上开源。

贾浩楠 ·  1天前
脑机接口利器,从脑波到文本,只需要一个机器翻译模型

加州大学旧金山分校的Joseph Makin 等人在 Nature Neuroscience上发表了一篇论文,标题为《利用 encoder-decoder 框架,将大脑皮质活动翻译为文本》(Machine translation of cortical activity to text with an encoder–decoder framework)。

蒋宝尚 ·  1天前
在工厂中实施工业物联网技术的5个理由

虽然有许多原因,但以下五个因素正在推动更多公司在其工厂中实施工业物联网解决方案。

Mark Cox ·  2天前
我们对人工智能的误解有多深

人工智能技术具有正、反两方面的作用,在造福于人类的同时,也存在各种风险。理论上可能存在以下四种风险。

陈小平 ·  2天前
令人兴奋的 2020 年人工智能和机器学习趋势

在本文中,我们将讨论几个顶级的人工智能和机器学习趋势,将塑造新年:2020。 我们还将介绍面部识别技术及其在2020年的应用。

飞羽译 ·  2天前
体验中国自主知识产权天元深度学习引擎与TensorFlow,PyTorch的对比

深度学习驱动之下最早创业的中国AI独角兽旷视,宣布开源自研深度学习框架MegEngine(Brain++核心组件之一),中文名天元——取自围棋棋盘中心点的名称。

尹成 ·  2天前
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载