黑箱难题仍在阻碍深度学习的普及

作者: 车品觉 2017-11-24 08:30:25

黑箱难题仍在阻碍深度学习的普及

当前,深度学习扛起了人工智能的大旗,让我们得以一窥智能机器在将来的能耐。但深度学习有个不小的问题:没人知道它是如何运作的。

我们并不是对深度学习一无所知。作为当今神经网络的核心,机器学习算法已经发展了几十年,它定义完善,文献丰富。在银行和保险业等受到严格监管的行业,这些算法已经普及多年,不曾引发重大问题。

“机器学习基本就是线性数学,很好解释,”数据公司Teradata***技术官斯蒂芬·布罗布斯特(Stephen Brobst)在Teradata合作伙伴大会的一场小组讨论上说。“然而,一旦涉及到多层神经网络,问题就成了非线性数学。不同变量之间的关系就纠缠不清了。”

神经网络的明晰性问题植根于它的基本架构,这种架构的复杂性是与生俱来的。通过将很多隐藏层逐层堆叠起来,我们其实创造出了几乎***量的路径,供数据在网络中训练时经过。继而,通过让数据一遍又一遍地经过这些路径,将每次循环中变量的权重交由机器自己决定,我们发现可以制造出更好的机器,提供比传统机器学习方法更加优质的答案。

这是对人脑的一种粗糙演绎——这里要强调的是“粗糙”,因为我们仍未充分掌握人脑的运作原理——但我们知道人脑能起作用,也知道神经网络能起作用,虽然我们对它们的运作原理不甚了了。从某种层面上讲,神经网络的不透明性不是什么缺陷,而是一种特色。

复杂性正是深度学习起效的秘方。

这也是一个不小的研究领域。金融服务等行业都对神经网络垂涎三尺,但目前都被禁止使用,因为他们无法向监管机构充分解释神经网络的运作原理。“在将机器学习投入风险评估等领域的过程中,这是***的一个障碍,这些领域受到严格的监管,”布罗布斯特说。“若只是欺诈检测和推荐引擎,你还可以侥幸过关。但监管严格的领域就不行了。”

这足以使DataRobot公司在这些领域的客户回避深度学习框架,如Tensorflow等,尽管DataRobot会帮助实现其自动化使用。“有时候,这些模型会因无法验证而被拒之门外,”DataRobot***运营官克里斯·德瓦尼(Chris Devaney)说。“你不太容易为它辩护。即便不是黑箱,它也表现得像个黑箱,因为你无法记录神经网络算法深处发生的一切。”

TensorFlow可以针对大规模数据集作出快速预测,但DataRobot的顾客不愿触及。目前,DataRobot正在与Immuta合作,旨在寻找并削减机器学习中的偏差,这方面的工作终将有所成效,但任重道远。“对于一些受到严格监管的客户,如果必须在政府机构面前捍卫这种模型,他们就会放弃考虑,”他说。

研究公司ForresterResearch副总裁、***分析师麦克·格列蒂里(Mike Gualtieri)说,有些公司一边使用深度学习,一边还抱有某种程度的怀疑。“连使用这些模型的公司都不信任它们,”他在近期的合作伙伴会议上说。

他说,开始使用深度学习的公司有办法对付这种不确定性,包括加入人类干预,用规则加以限定,他说。

“模型可以作出预测——这个预测始终都是一个概率——但如果预测不准呢?”他说。“你可以用规则加以限定。比如告诉它‘这是欺诈’,模型可能会说:‘这不是欺诈’。你也可以设定有利于人类的规则,比如说,‘我才不管模型怎么说——在我看来,这就是欺诈。”

在增加神经网络的透明度方面,人们已经做了一些工作。其中之一被称为“局部可理解的与模型无关的解释技术”(Model-Agnostic Explanations;下简称LIME)框架,由华盛顿大学计算机科学教授马可·图里奥·里贝罗(Marco Tulio Ribeiro)和他的同事萨米尔·辛格(Sameer Singh)及卡洛斯·格斯特林(Carlos Guestrin)共同提出。

LIME框架的设计旨在提高可理解性,使各类不透明算法生成的预测更易于解释。这包括传统的机器学习技术,比如随机森林与支持向量机(SVM),以及当今日益流行的神经网络技术。

作为GitHub上的开源软件,LIME框架有望逐层剥开神经网络的外衣。“LIME是一种高效的工具,赋予机器学习从业人员以信任感,可以加入到他们的工具组合中,”里贝罗、辛格和格斯特林教授在2016年发表于电脑资讯网站奥莱利(O’Reilly)的文章中写道。

然而,在得到业界的信赖之前,LIME还有很多工作要做。Teradata的布罗布斯特说。“以上提到的LIME框架,我们还没有完成呢,”他说,“这是一个活跃的研究领域……但我称之为‘毕业生代码’。其用例非常有限。专门用例需要专门定制。”

深度学习 机器学习 黑箱难题
上一篇:自创数据集,用TensorFlow预测股票教程 下一篇:用Madlib学习『机器学习』之KNN
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

12个场景应用,百余种算法,AI是如何攻占经济学的?

在虚拟世界中模拟现实经济状况,想法设计更好的制度只是AI和经济学结合方式之一。其实深度强化学习在面临风险参数和不确定性不断增加的现实经济问题时,也可以提供更好的性能和更高的精度。

蒋宝尚 ·  1天前
轻松构建 PyTorch 生成对抗网络(GAN)

生成对抗网络(GAN)是一种生成式机器学习模型,它被广泛应用于广告、游戏、娱乐、媒体、制药等行业,可以用来创造虚构的人物、场景,模拟人脸老化,图像风格变换,以及产生化学分子式等等。

佚名 ·  1天前
新AI让教师能够快速开发智能辅导系统

通过使用一种采用人工智能的新方法,教师可以通过演示解决某个主题中的问题的几种方法来教计算机……

佚名 ·  1天前
终结重复工作!教你30分钟创建自己的深度学习机器

建立一个深度学习环境是一件很重要的事情。本文讲述使用深度学习 CommunityAMI、TMUX和 Tunneling在EC2为Jupyter Notebooks创建一个新的深度学习服务器。

读芯术 ·  2天前
如何用机器学习模型,为十几亿数据预测性别

基于用户画像进行广告投放,是优化投放效果、实现精准营销的基础;而人口属性中的性别、年龄等标签,又是用户画像中的基础信息。那该如何尽量准确的为数据打上这些标签?

TalkingData ·  2天前
教你轻松选择合适的机器学习算法!

机器学习方面没有免费午餐。因此,确定使用哪种算法取决于许多因素:面临的问题类型和预期的输出类型等。本文介绍了为数据集探究合适的机器学习方法时要考虑的几个因素。

布加迪 ·  2天前
画图太丑拿不出手?有人做了套机器学习专用画图模板,还有暗黑模式

论文、博客写好了,里面的图可怎么画?对于很多研究人员和开发者来说,内容的「可视化」是一个大问题。如果从头开始画,配色、空间布局都很伤脑筋,而且画丑了也拿不出手,要是有模板可以套就好了。

张倩、魔王 ·  3天前
机器学习:物联网成功的诀窍?

通过机器学习,物联网可以完美地运行。全球各地的组织正在竞相利用物联网的能力,但是,其中许多组织都被我们讨论过的一个或多个障碍所困扰。不过,不管您遇到什么问题,都可以通过结合了机器学习技术的方法来解决。

iothome ·  3天前
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载