如有有一天,你的小孩问:「爸爸,什么是机器学习呀?」

作者: Daniel Tunkelang 2017-11-02 14:48:44

爸爸,什么是机器学习呀?

难以回答!抓了抓开始脱发的脑壳,爸比还是被这个问题KO了。这个有些学术的问题,如何给孩子解答?

近日,计算机科学博士Daniel Tunkelang就在Quora上回答了这个问题——

不如我们由机器学习中的分类问题入手,教计算机学习哪些食物好吃,哪些难吃。

如有有一天,你的小孩问:「爸爸,什么是机器学习呀?」

和人类不一样,计算机没有嘴巴,不能品尝食物。所以,我们需要用很多食物样例(标记的训练数据)教会计算机。这项样例中有美味的食物(正例),也有恶心的(负例)。对于每个被标记的示例,我们给计算机提供了描述食物(特征)的方法。

正例被标记为“美味”,比如巧克力冰淇淋、披萨、草莓等。负例被标记为“恶心”,比如凤尾鱼、花椰菜和球芽甘蓝。

在真正的机器学习系统中,你可能需要更多的训练数据,但3正3负的例子够我们了解概念了。

如有有一天,你的小孩问:「爸爸,什么是机器学习呀?」

现在,我们需要一些特征。不妨就将这些样例设置为甜、咸和蔬菜三个特征,因为为二元特性,所以每种食物的每个特征都被赋予“是”或“否”的值。

如有有一天,你的小孩问:「爸爸,什么是机器学习呀?」

有了这些训练数据后,计算机的工作就是从这些数据中总结一个公式(模型)。这样,当它会遇到新食物时,它能根据模型决定食物是美味还是恶心的。

一种模型是点系统(线性模型)。如果具备每个特性,就会得到一定分数(权重),如果不具备就没有分数。然后,模型将食物的点数加起来,得到最终分。

模型里有一个分界点,若得分高于分界点,模型就判定食物美味;如果分数低于分界点,就判定为难吃。

根据训练数据,模型中的特征分可能会被设置为甜3分,咸1分,松脆1分,蔬菜为-1分。则巧克力冰淇淋、披萨、草莓、凤尾鱼、花椰菜、和球芽甘蓝在模型中的得分如下:

如有有一天,你的小孩问:「爸爸,什么是机器学习呀?」

权重让选择分界点更容易,因为正例都得分≥2,负例得分≤1。

总能正确找到权重和分界点不太容易。即使找到了,最终可能会得到一个只适用于这个训练数据的模型,但当我们用新例子时,模型效果就没这么好了(过度拟合)。

理想的模型不仅在训练数据中正确率高,在新例中仍然有效(泛化)。通常,简单模型比复杂模型(奥卡姆剃刀)更容易一般化。

我们可以不使用线性模型,构建决策树也是个好方法。在决策树中,只能问能用“是”和“否”回答的问题。

用训练数据让决策树答对并不难,在这个示例中训练数据是这样利用的:

  • 这是蔬菜吗?
  • 如果是,则难吃。
  • 如果不是,那它是甜的吗?
  • 如果是,则好吃。
  • 如果不是,那它是松脆的吗?
  • 如果是,则好吃。
  • 如果不是,则难吃。

如同线性模型,我们需要担心过度拟合,不能让决策树太深。所以这意味着最终可能会有一个模型,虽然在我们的训练数据上会犯错,但能对新数据更好泛化。

希望孩子能听懂这个机器学习的解释~

机器学习 训练数据 模型
上一篇:盘点金融领域里常用的深度学习模型 下一篇:51CTO首届开发者大赛部分作品曝光,等你来补充!
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

机器人过程自动化的10个秘密

RPA(机器人过程自动化)承诺简化工作流程,将遗留系统粘合在一起,并授权业务用户解决自己的问题。但是,在大赢家的潜伏之下,潜伏着值得解决的问题。

佚名 ·  1天前
人工智能也会中毒,那人脸支付还安全吗?

机器学习系统在训练阶段,建立起一套复杂的数学计算,将输入数据与结果联系起来,它们非常擅长特定的任务,在某些情况下,甚至可以超越人类。

佚名 ·  1天前
北大、字节跳动等利用增量学习提出超像素分割模型LNSNet

图像分割是计算机视觉的基本任务之一,在自动驾驶、安防安保、智能诊疗等任务中都有着重要应用。

朱磊、佘琪 ·  1天前
MIT博士毕业,「太极」作者胡渊鸣回国创业,专注图形编程

今年 3 月完成博士学业后,胡渊鸣选择回国创业,成立了太极图形 (Taichi Graphics)公司,自己担任联合创始人兼 CEO。

杜伟 ·  1天前
我们可以将最佳实践抽象为实际的设计模式吗?机器学习

人工智能专家老吕 ·  2天前
开闸蓄水,企业机器学习井喷

机器学习(ML)正在推动人工智能(AI)应用爆炸式增长,帮助软件理解不确定和不可预测的现实世界。那么在企业服务领域,当前的机器学习繁荣靠的是什么?未来又将在哪些方面发挥更多的作用?

赵满满 ·  2天前
机器学习的5个常见痛点及解决方法

机器学习对于人类来说是有益的技术。尽管机器学习仍有一些内容需要重新审视和研究,但不可否认,它使人们的工作和生活变得更好。虽然机器学习的概念很难理解,但随着时间的推移,专家可以用一种更简单的方式表达。

HERO ·  2天前
数据能否为当今的企业建立竞争优势?

对于世界各地的企业来说,数据是一个巨大的竞争优势和增长源泉。

Cassie ·  2天前
Copyright©2005-2021 51CTO.COM 版权所有 未经许可 请勿转载