谷歌AutoML人工智能系统已可创建优于人类的机器学习代码

作者: 佚名 2017-10-17 14:35:50

谷歌 AutoML 系统最近出产了一系列机器学习代码,其效率甚至比研究人员自身还要高。显然,这是对“人类优越论”的又一次打击,因为机器人“学生”们已经成为了“自我复制”的大师。AutoML 是在人工智能***编程人才匮乏的情况下,作为一个解决方案而开发的。该团队提出了一种可以创建自学习代码的机器学习软件,系统会运行数千个模拟来确定代码的哪些方面可以作出改进,以及在改变后继续该过程、直到达成目标。

谷歌AutoML人工智能系统已可创建优于人类的机器学习代码

GoogleNet 架构设计示意图

这是一个对“***猴子理论”的***展示,但 Google 并未让一只猴子敲键盘打造出 Shakespeare,而是制造了一台能够自我复制编程的机器,且这些机器在数小时内表现,比人类程序员工作几周甚至数月都好。

谷歌AutoML人工智能系统已可创建优于人类的机器学习代码

虽然听起来有些吓人,但 AutoML 确实在机器学习系统的编程上,远胜于创造它的研究人员。在某个图像识别任务中,其实现了创纪录的 82% 的准确率。

即使在一些复杂的人工智能任务中,其自创建的代码也比人类程序员优越。它可以在图像中标记多个点,准确率达到 42%;作为对比,人类打造的软件只有 39% 。

谷歌AutoML人工智能系统已可创建优于人类的机器学习代码

当然,它并不代表“天网”或让人毛骨悚然的“数字幽灵”,因为我们还没有处于“自我感知机器”的奇点边缘,只是说我们在人工智能的技术潜力上又加了一把油门。

谷歌五个月前才宣布了 AutoML,鉴于其能够在这么短的时间内打造出一套比研究人员自身更棒的机器学习 AI 系统,未来一年的成果显然更值得期待。

[编译自:TNW]

谷歌
上一篇:3行Python代码完成人脸识别 下一篇:机器学习将是物联网发展不可或缺的未来式
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

科技巨头抢滩自动驾驶的背后,哪些是你不知道的事?

自动驾驶系统由以下三大系统组成:感知、决策、执行,目前,感知层主要是采用传感器技术,在获取感知数据后,系统会针对数据进行分析、决策和预测,然后完成相应的操控动作。

大脸肥飞猫 ·  20h前
BAIR最新RL算法超越谷歌Dreamer,性能提升2.8倍

pixel-based RL 算法逆袭,BAIR 提出将对比学习与 RL 相结合的算法,其 sample-efficiency 匹敌 state-based RL。

Aravind Srinivas ·  23h前
谷歌用AI训练“耳机线”,实现了触摸屏大多数功能

谷歌AI工程师开发了一款电子交互式编织物(E-Textile),可以让人通过捏、搓、握、拍等手势实现以往触摸屏的大部分功能。

梅宁航 ·  2020-05-22 09:45:24
谷歌中国工程师提出颠覆性算法模型,Waymo实测可提高预测精准度

“周围的车辆和行人在接下来数秒中会做什么?”要实现安全的自动驾驶,这是一个必须回答的关键问题,这也就是自动驾驶领域中的行为预测问题。

DeepTech深科技 ·  2020-05-21 10:16:41
华为突破封锁,对标谷歌Dropout专利,开源自研算法Disout

美国持续封锁,华为的技术自研,已经深入到了AI底层算法层面上,并开始将研究成果面向业界开源。

乾明 金磊 ·  2020-05-20 10:25:43
谷歌提出AI训练提速新方法,榨干GPU空闲时间,最高提速3倍多

因为通用计算芯片不能满足神经网络运算需求,越来越多的人转而使用GPU和TPU这类专用硬件加速器,加快神经网络训练的速度。

晓查 ·  2020-05-14 14:21:50
边做边思考,谷歌大脑提出并发RL算法,机械臂抓取速度提高一倍

RL 算法通常假设,在获取观测值、计算动作并执行期间环境状态不发生变化。这一假设在仿真环境中很容易实现,然而在真实机器人控制当中并不成立,很可能导致控制策略运行缓慢甚至失效。

机器之心 ·  2020-05-12 10:43:30
谁说RL智能体只能在线训练?谷歌发布离线强化学习新范式

为了避免 distribution mismatch,强化学习的训练一定要在线与环境进行交互吗?谷歌的这项最新研究从优化角度,为我们提供了离线强化学习研究新思路,即鲁棒的 RL 算法在足够大且多样化的离线数据集中训练可产生高质量的行为。

机器之心 ·  2020-04-15 16:44:38
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载