5分钟教你玩转 sklearn 机器学习(上)

作者: 赵成龙 2017-10-11 15:17:42

这是一篇很难写的文章,因为我希望这篇文章能对大家有所帮助。我不会给大家介绍机器学习,数据挖掘的行业背景,也不会具体介绍逻辑回归,SVM,GBDT,神经网络等学习算法的理论依据和数学推导,本文更多的是在流程化上帮助大家快速的入门机器学习和数据建模。

本文主要分为四个部分(限于时间关系会分为上下两篇):

上篇:

  1. 准备篇,主要涉及环境搭建以及pandas基本知识。
  2. 应用篇,我会以kaggle上的Titanic为例,从数据源获取,数据清洗,特征处理,模型选择,模型输出与运用。

下篇:

  1. 优化篇,介绍了几种优化的方法。
  2. 思考篇,提出几个困扰我的问题,希望能得到大家的帮助吧。

一 准备篇

1环境搭建

整个sklearn的实验环境是:python 2.7 + pycharm + Anaconda。

2 pandas基础

这里只能大家介绍下面会用到的pandas知识,有兴趣的可以去具体的学习。给大家推荐一本参考书:《Python for Data Analysis》。有基础的可以直接跳到应用篇。

pandas主要会用到Series 和DataFrame两种数据结构。Series像是一维的数组,而DataFrame更像是一种二维的表结构。

Series的构造方法:

  1. label=[1,0,1,0,1] 
  2. data = pd.Series(data=label,index=['a','b','c','d','e'],dtype=int,name="label"
  3. print data 

Series取数据,通过index取数

  1. data['a' 
  2. data[['a','b']] 

DataFrame的构造

(1)以字典的形式构造

  1. frame = pd.DataFrame({'name':['Time','Jack','Lily'],'Age':[20,30,12],"weight":[56.7,64.0,50.0]}) 

(2)由DataFrame 构建DataFrame

  1. frame1 = pd.DataFrame(frame,columns=["name","Age"]) 

从frame中读取了两列构成新的DataFrame。

DataFrame的操作

1 增加列

  1. frame1["friends_num"]=[10,12,14] 

2 删除列

  1. frame2 = frame1.drop(["name","Age"],axis=1) 

3 查找数据行

  1. frame1[frame1["friends_num"]>10] 

结果如下:

DataFrame的统计方法

1 apply 配合lambda 处理列,如将frame1的Age列进行分段。

  1. frame1["Age_group"] = frame1["Age"].apply(lambda x: 0 if x < 20 else 1) 

2 describe输出统计信息,非常强大

  1. frame1.describe() 

给出了8个统计量,对我们的数据处理特别有用。有个问题,直接使用describe方法只能统计数值类的列,对于字符类的变量没有统计。加个参数就行。

  1. frame1.describe(include=['O']) 

3 缺失值处理

  1. #以0填充缺失值 
  2. frame1.fillna(0) 
  3. #丢掉任何包含NAN的行  
  4. frame1.dropna() 
  5. #删除全为nan的行 
  6. frame1.dropna(how="all"

二 应用篇

1 数据读取

本例以Titanic作为数据源。大家可以在附件获取到数据。

  1. data = pd.DataFrame(pd.read_csv(train_path)) 
  2. data_test = pd.DataFrame(pd.read_csv(test_path)) 
  3. data_test = data_test[["Pclass","Name","Sex","Age","SibSp","Parch","Ticket","Fare","Cabin","Embarked"]] 
  4. x = data[["Pclass","Name","Sex","Age","SibSp","Parch","Ticket","Fare","Cabin","Embarked"]] 
  5. y = data[["Survived"]] 
  6. print x.describe() 
  7. print x.describe(include=['O']) 
  8. print data_test.describe() 
  9. print data_test.describe(include=['O']) 

数据的初始统计信息:

2 数据清洗

1 缺失值处理。

Age和Embarked列存在少量缺失值,分别处理。

  1. #用众数填充缺失值 
  2. data_set["Embarked"]=data_set["Embarked"].fillna('S'
  3. #用均值填充Age缺失值 
  4. data_set["Age"]=data_set["Age"].fillna(data_set["Age"].mean()) 

2 删除缺失率较大的列(初步处理时)

Cabin列的缺失率达到了75%,删除改列。

  1. data_set = data_set.drop([ "Cabin"], axis=1) 

3 特征处理

特征处理是基于具体的数据的,所以在特征处理之前要对数据做充分的理解。特征处理没有固定方法之说,主要靠个人的经验与观察,通过不断的尝试和变换,以期望挖掘出较好的特征变量。所以说,特征处理是模型建立过程中最耗时和耗神的工作。

1)单变量特征提取。

  1. #根据name的长度,抽象出name_len特征  
  2. data_set["name_len"] = data_set["Name"].apply(len) 

观察name列

通过观察Name列数据,可以发现名字中带有性别和婚否的称谓信息。提取这些信息(可能是有用的特征)。

  1. data_set["name_class"] = data_set["Name"].apply(lambda x : x.split(",")[1]).apply(lambda x :x.split()[0]) 

2)多变量的组合

sibsp 代表兄弟姐妹和配偶的数量

parch 代表父母和子女的数量

因此可以将sibsp和parch结合获得家庭成员的数量

  1. data_set["family_num"] = data_set["Parch"] + data_set["SibSp"] +1 

3)名义变量转数值变量

  1. #Embarked 
  2. data_set["Embarked"]=data_set["Embarked"].map({'S':1,'C':2,'Q':3}).astype(int
  3. #Sex 
  4. data_set["Sex"] = data_set["Sex"].apply(lambda x : 0 if x=='male' else 1) 

4)数据分段

根据统计信息和经验分段

  1. #[7.91,14.45,31.0]根据Fare的统计信息进行分段 
  2. data_set["Fare"] = data_set["Fare"].apply(lambda x:cutFeature([7.91,14.45,31.0],x)) 
  3. #[18,48,64]按照经验分段 
  4. data_set["Age"] = data_set["Age"].apply(lambda x:cutFeature([18,48,64],x)) 

简单的数据处理后,我们得到了如下12维数据:

4 模型选择与测试

初步选取了5种模型进行试验

RandomForestClassifier

ExtraTreesClassifier

AdaBoostClassifier

GradientBoostingClassifier

SVC

模型参数:

  1. #随机森林 
  2.     rf_params = { 
  3.         'n_jobs': -1, 
  4.         'n_estimators': 500, 
  5.         'warm_start'True
  6.         # 'max_features': 0.2, 
  7.         'max_depth': 6, 
  8.         'min_samples_leaf': 2, 
  9.         'max_features''sqrt'
  10.         'verbose': 0 
  11.     } 
  12.     # Extra Trees 随机森林 
  13.     et_params = { 
  14.         'n_jobs': -1, 
  15.         'n_estimators': 500, 
  16.         # 'max_features': 0.5, 
  17.         'max_depth': 8, 
  18.         'min_samples_leaf': 2, 
  19.         'verbose': 0 
  20.     } 
  21.  
  22.     # AdaBoost  
  23.     ada_params = { 
  24.         'n_estimators': 500, 
  25.         'learning_rate': 0.75 
  26.     } 
  27.  
  28.     # GBDT 
  29.     gb_params = { 
  30.         'n_estimators': 500, 
  31.         # 'max_features': 0.2, 
  32.         'max_depth': 5, 
  33.         'min_samples_leaf': 2, 
  34.         'verbose': 0 
  35.     } 
  36.  
  37.     # SVC 
  38.     svc_params = { 
  39.         'kernel''linear'
  40.         'C': 0.025 
  41.     } 

模型选择代码:

  1. classifiers = [ 
  2.         ("rf_model", RandomForestClassifier(**rf_params)), 
  3.         ("et_model", ExtraTreesClassifier(**et_params)), 
  4.         ("ada_model", AdaBoostClassifier(**ada_params)), 
  5.         ("gb_model", GradientBoostingClassifier(**gb_params)), 
  6.         ("svc_model", SVC(**svc_params)), 
  7.     ] 
  8.  
  9.     heldout = [0.95, 0.90, 0.75, 0.50, 0.01] 
  10.     rounds = 20 
  11.     xx = 1. - np.array(heldout) 
  12.     for name, clf in classifiers: 
  13.         print("training %s" % name
  14.         rng = np.random.RandomState(42) 
  15.         yy = [] 
  16.         for i in heldout: 
  17.             yy_ = [] 
  18.             for r in range(rounds): 
  19.                 X_train_turn, X_test_turn, y_train_turn, y_test_turn = \ 
  20.                     train_test_split(x_train, labels_train, test_size=i, random_state=rng) 
  21.                 clf.fit(X_train_turn, y_train_turn) 
  22.                 y_pred = clf.predict(X_test_turn) 
  23.                 yy_.append(1 - np.mean(y_pred == y_test_turn)) 
  24.             yy.append(np.mean(yy_)) 
  25.         plt.plot(xx, yy, label=name
  26.  
  27.     plt.legend(loc="upper right"
  28.     plt.xlabel("Proportion train"
  29.     plt.ylabel("Test Error Rate"
  30.     plt.show() 

选择结果如下:

从上图可以看出,randomForest的一般表现要优于其他算法。初步选择randomforest算法。

模型的在训练集上的表现:

  1. def modelScore(x_train,labels_train,x_test,y_test,model_name,et_params): 
  2.     print("--------%s------------")%(model_name) 
  3.     model = model_name(**et_params) 
  4.  
  5.     model.fit(x_train, labels_train) 
  6.     if "feature_importances_" in dir(model): 
  7.         print model.feature_importances_ 
  8.  
  9.     print classification_report( 
  10.         labels_train, 
  11.         model.predict(x_train)) 
  12.  
  13.     print classification_report( 
  14.         y_test, 
  15.         model.predict(x_test)) 
  16.     return model 
  17.  
  18. modelScore(x_train, labels_train, x_test, y_test, RandomForestClassifier, rf_params) 

训练集的混淆矩阵如下图:

测试集的混淆矩阵如下图:

到此,初步的学习模型就建立起来了,测试集的准确度为83%。由于时间关系,优化篇和思考篇将放在下篇文章与大家分享,敬请期待。

原文链接:https://cloud.tencent.com/community/article/229506

作者:赵成龙

【本文是51CTO专栏作者“腾讯云技术社区”的原创稿件,转载请通过51CTO联系原作者获取授权】

戳这里,看该作者更多好文

sklearn 机器学习 pandas
上一篇:15个统计数字解读人工智能前景 下一篇:神经网络求解新思路:OpenAI用线性网络计算非线性问题
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

手把手教你解决90%的NLP问题

利用机器学习方法来理解和利用文本,从最简单的到state-of-the-art,由浅入深,循序渐进。

Emmanuel Ameisen ·  17h前
如何解决机器学习树集成模型的解释性问题

前些天在同行交流群里,有个话题一直在群里热烈地讨论,那就是 如何解释机器学习模型 ,因为在风控领域,一个模型如果不能得到很好的解释一般都不会被通过的,在银行里会特别的常见,所以大多数同行都是会用 LR 来建模。

SAMshare ·  21h前
刷脸取件被小学生“破解”!丰巢紧急下线 精选

近日,#小学生发现刷脸取件bug#的话题引发关注!这是真的吗?都市快报《好奇实验室》进行了验证。

好奇实验室 ·  2019-10-17 10:20:39
4 分钟!OpenAI 的机器手学会单手解魔方了,完全自学无需编程 精选

OpenAI 的机器手学会单手解魔方了,而且还原一个三阶魔方全程只花了 4 分钟,其灵巧程度让人自叹不如。

佚名 ·  2019-10-16 13:52:13
MIT新研究表明机器学习不能标记假新闻

麻省理工学院研究人员发表的两篇新论文显示,当前的机器学习模型还不能完成区分虚假新闻报道的任务。在不同的研究人员表明计算机可以令人信服地生成虚构新闻故事而无需太多人为监督之后,一些专家希望可以训练基于相同机器学习的系统来检测此类新闻。

佚名 ·  2019-10-16 11:52:15
高位截瘫患者重新行走:靠意念指挥外骨骼,法国脑机接口新突破 精选

依靠介入头部的 2 个传感器,法国里昂的一名瘫痪男子 Thibault 实现了操控外骨骼装备来助力行走。

孙滔 ·  2019-10-15 10:10:00
2008 年预测 2020 年生活方式:基本都实现了

美国皮尤研究中心曾在 2008 年预测 2020 年的生活方式,目前来看,该研究的预测基本已经实现。而对于未来 10 年,也就是 2030 年左右人们的生活,在 2017 年底的世界经济论坛上,800 多名信息和通讯技术领域的技术高管和专家给出了如下预测。

佚名 ·  2019-10-15 10:03:43
机器学习的正则化是什么意思?

正则化的好处是当特征很多时,每一个特征都会对预测y贡献一份合适的力量;所以说,使用正则化的目的就是为了防止过拟合。

佚名 ·  2019-10-15 10:01:43
Copyright©2005-2019 51CTO.COM 版权所有 未经许可 请勿转载