为什么要用深度学习来做个性化推荐 CTR 预估

作者: 苏博览 2017-09-29 14:56:28

深度学习应该这一两年计算机圈子里最热的一个词了。基于深度学习,工程师们在图像,语音,NLP等领域都取得了令人振奋的进展。而深度学习本身也在不断的探索和发展中,其潜力的极限目前还没有被看到。

当然,深度学习也不是***的,比如有很多问题的特征是易于提取的,我们可以直接使用SVM, 决策树的算法来取得很好的结果。而深度学习并不能提供太多的帮助。还有一些问题,我们并没有足够数量的数据,我们也很难通过深度学习算法来得到可用的模型。此外,有些问题对计算资源和时间的要求比较严苛,在深度学习小型化没有取得突破性进展的时候,它们也不是***方法。

判断一个项目适不适合上深度学习的正确姿势

( 图片来源 : 深度学习防骗指南 )

反过来说,虽然目前深度学习在个性化推荐,计算广告领域上还没有很大的突破,但是我认为推荐系统有很大概率会是深度学习的最重要的应用场景之一。理由有以下几个方面:

现在的推荐系统都要面对海量的数据,要提取上万乃至上亿维的特征。而深度学习本身就是一个很好的表示学习的框架,从海量的数据中学习到人类无法提取的特征组合,是其擅长的事情。

( 图片来源 : 深度学习防骗指南 )

数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。现有的推荐系统依赖于特征工程的效果。而特征工程建立在不断的深入理解问题和获取额外的数据源上。然而根据数据人能抽象出来的特征总类很有限,新数据源和新特征的获得会越来越难。随着人工特征工程的深入,投入的人力和时间越来越长,得到的新特征对系统的提升却越来越少。这个时候,使用深度学习来做特征表达,在成本上也许是一个更好的选择。

图:IBM Watson系统的精度提升曲线。可以看到一开始的时候结果提升的特别快,后面一点点的提升都要付出很大的努力,

因此我们基于Tensorflow在某个业务上做了DNN的尝试,跑通了整个流程,积累了一些经验。也比原有LR的模型在线上有了20%多的提升。希望这些代码也可以帮助各位同学快速的在自己的业务上实现一套深度模型的框架。

图: DNN在CTR预估的一般框架

一般来说,我们可以先选择一个比较简单的框架来跑通整个流程,然后再慢慢增加模型的复杂度。通常我们可以选用下图的框架,把我们用到的数据分为两类:连续的,和离散的特征。

对于连续的特征,需要做一些归一化;对于离散的特征,则一般要做一个Embedding,把一个离散的特征转成一个N维的向量。这个向量的长度一般来说是和该向量的取值空间成正比的。这个embedding的过程可以用FM来实现。 在我们的代码里,是通过Tensorflow自动embedding_column实现的。

所以把用户数据和推荐的物品数据放一起分成两类,然后把embedded之后的离散特征 和 连续特征组合在一起,作为神经网络的输入,输出就是[0,1] 是否点击。这里面我们就直接调用tensorflow的DNNClassifier。这个网络可以设计层数,每层的大小,dropout, 激活函数,学习率等等。

  1. opt = tf.train.AdamOptimizer(learning_rate=0.01, 
  2.                                    beta1=0.9, 
  3.                                    beta2=0.999)            # default 0.001 0.9 0.999  
  4.  
  5.  
  6.        m = tf.contrib.learn.DNNClassifier(model_dir=model_dir, 
  7.                                           feature_columns=deep_columns, 
  8.                                           hidden_units=[1024, 512, 256], 
  9.                                           optimizer = opt, 
  10.                                           activation_fn=tf.nn.relu,        # default 
  11.                                           dropout=0.05 ) 

所以后面就是一个不断调参的过程,当然这个调参也是有一些技巧。网上有很多,在这里就不一一来说了。

深度学习调参师

( 图片来源 : 深度学习防骗指南 )

总的来说,深度学习没有那么神秘,它是一个很有效的工具。在个性化推荐上应该已经有很多团队进行了很多尝试。在这里,我们给出了一个简单和有效的基于Tensorflow的实现方式,也希望可以帮助一些想要尝试深度学习的一些团队。

 原文链接:https://cloud.tencent.com/community/article/603674

作者:苏博览

【本文是51CTO专栏作者“腾讯云技术社区”的原创稿件,转载请通过51CTO联系原作者获取授权】

戳这里,看该作者更多好文

深度学习 CTR 预估
上一篇:[ I am Jarvis ] :聊聊 FaceID 背后的深度学习视觉算法 下一篇:内存带宽与计算能力,谁才是决定深度学习执行性能的关键?
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

2020年搞深度学习需要什么样的GPU:请上48G显存

在 lambda 最新的一篇显卡横向测评文章中,开发者们探讨了哪些 GPU 可以再不出现内存错误的情况下训练模型。当然,还有这些 GPU 的 AI 性能。

机器之心 ·  4天前
一个案例掌握深度学习

近期我们将连载一个深度学习专题,由百度深度学习技术平台部主任架构师毕然分享,让你快速入门深度学习,参与到人工智能浪潮中。

佚名 ·  2020-02-12 17:10:54
20条理由告诉你,为什么当前的深度学习成了人工智能的死胡同?

在深度学习刚刚进入视线时,大多数AI研究人员嗤之以鼻,但短短几年后,它的触角已经横跨医疗、教育、汽车等众多领域。

AI科技评论 ·  2020-02-10 13:36:30
2020,人工智能和深度学习未来的五大趋势

虽然近年来人工智能经常成为热门议题,但它还远未实现真正的成就。人工智能技术发展的主要障碍在于投资成本,投资成本影响短期内的回报。而当时机成熟时,投资AI的公司却可以获得巨大的回报。在最近的一份报告中,麦肯锡预测人工智能领头企业未来将会实现现金流翻倍。

CSDN App ·  2020-02-09 17:27:29
深度学习火了那么多年,到底怎么搞?使用Numpy快速入门

近期我们将连载一个深度学习专题,由百度深度学习技术平台部主任架构师毕然分享,让你快速入门深度学习,参与到人工智能浪潮中。

佚名 ·  2020-02-05 11:25:29
请别再把深度学习与机器学习混为一谈了!

虽说机器学习和深度学习都能发现数据中的模式与特征,但是它们所涉及到的技术和具体的应用场景却截然不同。

陈峻 ·  2020-02-05 09:00:00
OpenAI全面拥抱PyTorch,TensorFlow:我哪里比不上它?

TensorFlow 和 PyTorch 框架之争由来已久,近日的一则新闻让 PyTorch 阵营「更添一员大将」。

一鸣 ·  2020-02-03 09:20:43
构建生产机器学习系统的一些考虑

这篇文章介绍了为生产系统构建机器学习过程的很多方面的内容,都是从实践中总结出来的。

AI公园 ·  2020-02-03 09:09:23
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载