内存带宽与计算能力,谁才是决定深度学习执行性能的关键?

作者: 佚名 2017-09-28 11:20:59

说到模型对于硬件的要求,大家第一个想到的就是计算量,即一个深度学习模型需要多少次计算才能完成一次前馈。然而,除了运算量之外,模型对于内存带宽的需求也是影响实际计算所需要时间的重要参数。我们下面会看到,在内存带宽有限的情况下,仅仅缩小计算量并不能让计算时间等比例下降!

性能影响

内存带宽对于硬件系统的性能影响如上图所示。如果把内存比做瓶子,运算单元比作杯子,那么数据就是瓶子里的各色颗粒,而内存接口就是瓶口,通过瓶口数据才能进入杯子被消费(处理)掉。而内存带宽就是瓶口的宽度了。瓶口宽度越窄,则数据需要越多时间才能进入杯子(处理单元)。正所谓「巧妇难为无米之炊」,如果带宽有限,那么即使处理单元无限快,在大多数时候也是处理单元在空等数据,造成了计算力的浪费。

深度学习网络与 Roofline 模型

对于工程师来说,定性分析并不够,我们还需要能定量分析算法对于内存带宽的需求,以及对于计算性能的影响。

算法对于内存带宽的需求通常使用「运算强度 (operational intensity,或称 arithmetic intensity)」这个量来表示,单位是 OPs/byte。这个量的意思是,在算法中平均每读入单位数据,能支持多少次运算操作。运算强度越大,则表示单位数据能支持更多次运算,也就是说算法对于内存带宽的要求越低。所以,运算强度大是好事!

我们来举一个例子。对于步长(stride)为 1 的 3x3 卷积运算,假设输入数据平面大小为 64x64。简单起见,假设输入和输出 feature 都为 1。这时候,总共需要进行 62x62 次卷积运算,每次卷积需要做 3x3=9 次乘加运算,所以总共的计算次数为 34596,而数据量为(假设数据和卷积核都用单精度浮点数 2byte):64x64x2(输入数据)+ 3x3x2(卷积核数据)= 8210 byte,所以运算强度为 34596/8210=4.21。如果我们换成 1x1 卷积,那么总的计算次数变成了 64x64=4096,而所需的数据量为 64x64x2 + 1x1x2=8194。显然,切换为 1x1 卷积可以把计算量降低接近 9 倍,但是运算强度也降低为 0.5,即对于内存带宽的需求也上升了接近 9 倍。因此,如果内存带宽无法满足 1x1 卷积计算,那么切换成 1x1 卷积计算虽然降低了接近 9 倍计算量,但是无法把计算速度提升 9 倍。

这里,我们可以看到,深度学习计算设备存在两个瓶颈,一个是处理器计算能力,另一个是计算带宽。如何分析究竟是哪一个限制了计算性能呢?可以使用 Roofline 模型。

典型的 Roofline 曲线模型如上图所示,坐标轴分别是计算性能(纵轴)和算法的运算强度(横轴)。Roofline 曲线分成了两部分:左边的上升区,以及右边的饱和区。当算法的运算强度较小时,曲线处于上升区,即计算性能实际被内存带宽所限制,有很多计算处理单元是闲置的。随着算法运算强度上升,即在相同数量的数据下算法可以完成更多运算,于是闲置的运算单元越来越少,这时候计算性能就会上升。然后,随着运算强度越来越高,闲置的计算单元越来越少,最后所有计算单元都被用上了,Roofline 曲线就进入了饱和区,此时运算强度再变大也没有更多的计算单元可用了,于是计算性能不再上升,或者说计算性能遇到了由计算能力(而非内存带宽)决定的「屋顶」(roof)。拿之前 3x3 和 1x1 卷积的例子来说,3x3 卷积可能在 roofline 曲线右边的饱和区,而 1x1 卷积由于运算强度下降,有可能到了 roofline 左边的上升区,这样 1x1 卷积在计算时的计算性能就会下降无法到达峰值性能。虽然 1x1 卷积的计算量下降了接近 9 倍,但是由于计算性能下降,因此实际的计算时间并不是 3x3 卷积的九分之一。

Roofline Model

显然,一个计算系统的内存带宽如果很宽,则算法不需要运算强度很大也能轻易碰到计算能力上限决定的「屋顶」。在下图中,计算能力不变,而随着内存带宽的上升,达到计算力屋顶所需的运算强度也越低。

带宽-强度

Roofline 模型在算法-硬件协同设计中非常有用,可以确定算法和硬件优化的方向:到底应该增加内存带宽/减小内存带宽需求,还是提升计算能力/降低计算量?如果算法在 roofline 曲线的上升区,那么我们应该增加内存带宽/减小内存带宽需求,提升计算能力/降低计算量对于这类情况并没有帮助。反之亦然。

我们来看一个实际的例子,比较一下各种机器学习算法在 roofline 模型上所处的位置。下图取自 Google 的 TPU 论文《In-Datacenter Performance Analysis of a Tensor Processing Unit》。由图中可见,LSTM 算法的运算强度最低,所以被卡在了 roofline 模型的上升区中间的地方,即 TPU 在执行 LSTM 算法的时候,由于内存带宽限制所以性能只有 3TOPS 左右,仅为峰值性能(90TOPS)的三十分之一。经典全联接神经网络(multi-layer perceptrons, MLP)的运算强度略好于 LSTM,也被卡在 roofline 曲线的上升区,实际执行性能大约在 10TOPS 左右。而卷积神经网络模型,尤其是 CNN0,由于卷积神经网络中能实现卷积核复用,因此运算强度非常高,于是可以非常接近 TPU roofline 曲线的屋顶(86 TOPS)。CNN1 模型虽然运算强度也很高,但是由于种种其他原因(论文中表示是由于 CNN1 模型的特征深度较浅无法完全利用 TPU 的计算单元)无法到达屋顶。这个例子又让我们看到了硬件-算法协同设计时的另一个要点:除了内存带宽之外还有「其他原因」可能让算法无法到达屋顶,我们要尽量减小这些「其他因素」!

深度学习 内存带宽 计算能力
上一篇:如何解决深度学习中的多体问题 下一篇:揭秘支付宝中的深度学习引擎:xNN
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

18个挑战项目带你快速入门深度学习

AlphaGo 大战李世?h之后,深度学习技术便在国内变得异常火。吸引了大批的技术人员争相学习,那么到底如何才能更快速的入门深度学习呢?下面给大家介绍的 18 个挑战项目,通过实践动手带你快速入门深度学习!

实验楼 ·  3天前
盘点 | 8个你可能不知道的深度学习应用案例

深度学习与传统机器学习系统的不同之处在于,它能够在分析大型数据集时进行自我学习和改进,因此能应用在许多不同的领域。

天极网 ·  3天前
2019年较热门的5大深度学习课程

今天,我们将和大家盘点一下,当下较流行的深度学习资源/课程,可以帮助你们提升深度学习技能。

猿哥 ·  2019-09-26 05:16:24
DeepMind一次性开源3个新框架!深度强化学习应用落地即将迎来春天?

深度强化学习(Deep Reinforcement Learning,DRL)一直是近年来人工智能的一些重大突破的核心。然而,尽管 DRL 有了很大的进步,但由于缺乏工具和库,DRL 方法在主流解决方案中仍然难以应用。

杨鲤萍 ·  2019-09-20 09:38:18
一步一步带你完成深度学习与对象检测之人脸识别

要进行人脸识别,就要搜集用户的人脸图片,我们从网站上搜集了几个明星的照片来进行本期文章的分享。此部分文章是人脸识别的第一部分,人脸数据的搜集与提取,后期我们分享人脸识别系统的神经网络训练与人脸识别。

人工智能研究所 ·  2019-09-18 07:20:34
看懂这十步,8岁的小朋友都能理解深度学习

如果对当今人工智能的主流技术——深度学习没有了解,可能真的会有人觉得,当前的科学家们在创造无所不能、无所不知的电影AI形象。那么,如何用最浅显的方式,给大众解释什么是深度学习呢?快来看看吧!

佚名 ·  2019-09-17 16:56:39
PyTorch版《动手学深度学习》开源了,最美DL书遇上超赞DL框架

李沐等人的开源中文书《动手学深度学习》现在有 PyTorch 版实现了。不论是原书中的示例代码,还是实战项目,原来的 MXNet 都可以无缝转化到 PyTorch 代码。

ShusenTang ·  2019-09-17 10:23:45
2019年10大机器学习Q&A,面试应知!

本文整理了一些最常见的机器学习面试问题及其相应的回答。机器学习有志者以及经验丰富的ML专业人员可以在面试前以此巩固其基础知识。

读芯术 ·  2019-09-09 11:07:00
Copyright©2005-2019 51CTO.COM 版权所有 未经许可 请勿转载