神经网络训练中,傻傻分不清Epoch、Batch Size和迭代

作者: 李亚洲 2017-09-26 10:09:55

你肯定经历过这样的时刻,看着电脑屏幕抓着头,困惑着:「为什么我会在代码中使用这三个术语,它们有什么区别吗?」因为它们看起来实在太相似了。

为了理解这些术语有什么不同,你需要了解一些关于机器学习的术语,比如梯度下降,以帮助你理解。

这里简单总结梯度下降的含义…

梯度下降

这是一个在机器学习中用于寻找***结果(曲线的最小值)的迭代优化算法。

梯度的含义是斜率或者斜坡的倾斜度。

下降的含义是代价函数的下降。

算法是迭代的,意思是需要多次使用算法获取结果,以得到***化结果。梯度下降的迭代性质能使欠拟合的图示演化以获得对数据的***拟合。

梯度下降中有一个称为学习率的参量。如上图左所示,刚开始学习率更大,因此下降步长更大。随着点下降,学习率变得越来越小,从而下降步长也变小。同时,代价函数也在减小,或者说代价在减小,有时候也称为损失函数或者损失,两者都是一样的。(损失/代价的减小是一件好事)

只有在数据很庞大的时候(在机器学习中,几乎任何时候都是),我们才需要使用 epochs,batch size,迭代这些术语,在这种情况下,一次性将数据输入计算机是不可能的。因此,为了解决这个问题,我们需要把数据分成小块,一块一块的传递给计算机,在每一步的末端更新神经网络的权重,拟合给定的数据。

EPOCHS

当一个完整的数据集通过了神经网络一次并且返回了一次,这个过程称为一个 epoch。

然而,当一个 epoch 对于计算机而言太庞大的时候,就需要把它分成多个小块。

为什么要使用多于一个 epoch?

我知道这刚开始听起来会很奇怪,在神经网络中传递完整的数据集一次是不够的,而且我们需要将完整的数据集在同样的神经网络中传递多次。但是请记住,我们使用的是有限的数据集,并且我们使用一个迭代过程即梯度下降,优化学习过程和图示。因此仅仅更新权重一次或者说使用一个 epoch 是不够的。


随着 epoch 数量增加,神经网络中的权重的更新次数也增加,曲线从欠拟合变得过拟合。

那么,几个 epoch 才是合适的呢?

不幸的是,这个问题并没有正确的答案。对于不同的数据集,答案是不一样的。但是数据的多样性会影响合适的 epoch 的数量。比如,只有黑色的猫的数据集,以及有各种颜色的猫的数据集。

BATCH SIZE

一个 batch 中的样本总数。记住:batch size 和 number of batches 是不同的。

BATCH 是什么?

在不能将数据***神经网络的时候,就需要将数据集分成几个 batch。

正如将这篇文章分成几个部分,如介绍、梯度下降、Epoch、Batch size 和迭代,从而使文章更容易阅读和理解。

迭代

理解迭代,只需要知道乘法表或者一个计算器就可以了。迭代是 batch 需要完成一个 epoch 的次数。记住:在一个 epoch 中,batch 数和迭代数是相等的。

比如对于一个有 2000 个训练样本的数据集。将 2000 个样本分成大小为 500 的 batch,那么完成一个 epoch 需要 4 个 iteration。

Epoch Batch Size 神经网络
上一篇:内存带宽与计算能力,谁才是决定深度学习执行性能的关键? 下一篇:迪拜测试无人“飞的”:有望全球首推无人机载客服务
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

LeCun联手博士后arxiv发文,遭reddit网友质疑:第一张图就错了

两个月前自监督学习领域出了一篇重磅论文,LeCun和他的学生共同完成新模型Barlow Twins,reddit网友指出,第一张图就错了!

佚名 ·  4天前
新的人工神经元设备可以使用极少能量运行神经网络计算

加州大学圣地亚哥分校的研究人员开发了一种新的人工神经元装置,训练神经网络来执行任务。

佚名 ·  2021-04-29 08:50:39
进行三万多次地震训练后,他们发现了快速预测震动强度的新方法

用来训练DeepShake网络的地震数据是来自于2019年加州Ridgecrest序列的地震记录。

大数据文摘 ·  2021-04-28 14:35:55
高数有救了!神经网络不到一秒就能求解偏微分方程

对于特别复杂的偏微分方程,可能需要数百万个CPU小时才能求解出来一个结果。随着问题越来越复杂,从设计更优秀的火箭发动机到模拟气候变化,科学家们需要一个更「聪明」的求解方法。

新智元 ·  2021-04-22 09:44:40
有了这支矢量神经风格画笔,无需GAN也可生成精美绘画

一种新的神经风格画笔能够生成矢量形式的绘画作品,在统一框架下支持油画、马克笔、水彩画等多种笔触,并可进一步风格化。

机器之心 ·  2021-04-21 14:58:49
ICLR 2021研究挖掘游戏技能包?有序记忆决策网络帮你实现

在现实世界里,人类尤其具有这种将复杂任务有效分解为多个子任务的能力。这种能力帮助人类面对新环境时加速自身的学习过程并获得更好的泛化能力。

Yucheng Lu, Yikang Shen等 ·  2021-04-19 13:57:12
CPU比GPU训练神经网络快十几倍,英特尔:别用矩阵运算了

神经网络训练通常是 GPU 大显身手的领域,然而莱斯大学和英特尔等机构对 GPU 的地位发起了挑战。

机器之心 ·  2021-04-09 15:45:08
Facebook创造了两个会交流的神经网络来描述颜色

尽管人类世界拥有数千种语言,但是使用词语来表示不同颜色的方式是非常一致的。

佚名 ·  2021-03-30 17:16:44
Copyright©2005-2021 51CTO.COM 版权所有 未经许可 请勿转载