30行JavaScript代码,教你分分钟创建神经网络

作者: 代码小能手 2017-09-15 13:35:11

30行JavaScript代码,教你分分钟创建神经网络

自己搭建神经网络太复杂?

别怕!

今天我们将手把手教你如何用30行代码轻松创建一个神经网络

在本篇文章中,你将学到:

如何使用Synaptic.js(https://synaptic.juancazala.com/#/)创建和训练神经网络。

利用这款工具,我们可以在浏览器中用Node.js进行深度学习。

今天我们要讲的例子是一个非常简单的神经网络,我们将用它来学习逻辑异或方程(XOR equation)。

同时,我也在Scrimba上创建了一个交互式屏幕录像。你也可以通过观看视频来学习本教程。(https://scrimba.com/casts/cast-1980)

在开始编程之前,让我们先快速浏览神经网络的一些基本概念。

神经元和突触

神经网络的***个模块,是神经元。

神经元类似一个函数,你输入一些值,它就会输出返回值。

神经元有各种不同的类型。我们的神经网络将用到sigmoid神经元(https://en.wikipedia.org/wiki/Sigmoid_function),将任何输入的给定值,压缩到0到1之间。

下图中的圆圈就代表一个sigmoid神经元。它的输入值是5,输出值是1。箭头则代表的是神经元的突触,用来连接神经网络中其它层的神经元。

为什么会有一个红色的数字5呢?它是连接到神经元的三个突触(左边3个箭头)的值之和。

在最左边,我们看到有两个值与所谓的偏差值进行了加法运算。数值1和0是绿色的,而偏差值-2是棕色的。

首先,两个输入值与他们的权重分别相乘,权重就是蓝色数字7和3。

然后,我们把他们和偏差值加起来,所得的结果是5,对应红色数字。这个红色数字就是我们人工神经元的输入值。

由于我们的神经元是sigmoid神经元,它会将任何值压缩到0到1的区间范围内,所以输出值被压缩到1。

如果将这些神经元的网络连接起来,就形成了一个神经网络。通过神经元间的突触连接,从输入到输出进行正向传播。如下图所示:

神经网络的目标是训练其泛化能力,例如识别手写的数字或者垃圾邮件。做到好的泛化重要的是通过神经网络找到合适的权重和偏差值。如上述例子中的蓝色和棕色数字。

当训练神经网络时,我们只需要加载大量示例数据,如手写的数字,然后让神经网络来预测正确的数字。

在每次预测后,你需要计算预测的偏差程度,然后调整权重和偏差值使得神经网络在下一次运算中可以预测的更加准确。这种学习过程被称为反向传播。如此重复上千次,你的神经网络很快会精于泛化。

本教程不包括反向传播的工作原理介绍,但是我找到了3个好的教程帮助大家理解:

  • 分步介绍反向传播案例(https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/) – 作者:Matt Mazur
  • 神经网路骇客指南(https://karpathy.github.io/neuralnets/) – 作者:Andrej Karpathy
  • 神经网络和深度学习(https://neuralnetworksanddeeplearning.com/chap1.html) – 作者:Michael Nielsen

用代码搭建神经网络

现在,你应该已经对神经网络有了基础概念,那就让我们进入代码部分吧。

1.创建神经网络层

在synaptic中我们使用new layer()函数来创建。函数中传递的数字表示的是每一层会有多少个神经元。

接下来我们将这些层进行连接并实例化一个神经网络,代码如下,

这是一个2-3-1结构的神经网络,可视化表示如下:

2.训练神经网络

我们共进行了20,000次的训练,每一次都进行四次正向传播和反向传播运算,分别传递四个可能的输入到神经网络:[0,0] [0,1] [1,0] [1,1] 。

我们从myNetwork.activate([0,0])激活函数开始,[0,0]是神经网络的输入值,这个过程是正向传播,也被称为激活网络。在每一次正向传播后我们需要做一次反向传播,从而更新神经网络的权重和偏差值。

反向传播通过下面这行代码实现

  1. myNetwork.propagate(learningRate, [0]) 

learningRate是一个常数,用来告诉神经网络每次应该对权重值进行多大程度的调整。第二个参数0表示的是当输入为[0,0]时,正确的输出参数是0.

然后,神经网络将预测值和真实值进行对比,来判断预测是否正确。

它将比较的结果作为调整权重和偏差值的基础,以便下次的预测可以更加准确。

在执行这个过程20,000次后,我们可以通过传递四个可能的输入到激活网络,从而判断目前神经网络的预测情况:

如果我们将这些值四舍五入到最近的整数,就将得到异或方程的正确结果。万岁!

以上就是教程的全部内容了。

虽然我们只了解了神经网络的皮毛,但这已经足够支持你开始使用Synaptic,并继续学习。另外,Synaptic的wiki中有很多好的教程,你可以点击以下链接浏览(https://github.com/cazala/synaptic/wiki)。

JavaScript 神经网络
上一篇:Docker Compose + GPU + TensorFlow 所产生的奇妙火花 下一篇:人工智能,将开启一场史无前例的职业大革命
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

2019年较热门的5大深度学习课程

今天,我们将和大家盘点一下,当下较流行的深度学习资源/课程,可以帮助你们提升深度学习技能。

猿哥 ·  2019-09-26 05:16:24
2019年用于JavaScript的6大机器学习库

通常,人们使用两种编程语言之一来应用机器学习(ML)方法和算法:Python或R.关于机器学习的书籍,课程和教程通常也使用这些语言中的一种(或两者)。

爱码农 ·  2019-07-17 09:59:46
像堆乐高一样:从零开始解释神经网络的数学过程

模型的训练、调参是一项非常费时费力的工作,了解神经网络内部的数学原理有利于快速找出问题所在。本文作者从零开始,一步一步讲解了训练神经网络时所用到的数学过程。

机器之心 ·  2019-07-12 07:26:26
60年技术简史,带你读懂AI的前世今生

关于人工智能有很多的定义,它本身就是很多学科的交叉融合,不同的人关注它的不同方面,因此很难给出一个大家都认可的一个定义。我们下面通过时间的脉络来了解AI的反正过程。

佚名 ·  2019-07-08 13:40:22
什么?神经网络还能创造新知识?

本文通过神经网络透明原则来揭示其“黑盒知识”,为此来检验一个布尔异或函数的神经网络。

读芯术 ·  2019-07-02 13:37:23
JavaScript教程:为Web应用程序添加人脸检测功能

不妨使用pico.js JavaScript库为我们的React地图浏览器应用程序添加人脸检测功能。上周我们使用annyang为地图界面增添了语音命令(https://www.infoworld.com/article/3400658/javascript-tutorial-add-speech-recognition-to-your-web-app.html)。

布加迪 ·  2019-07-02 08:00:00
掌握这十大机器学习方法,你就是圈子里最靓的崽

为揭开机器学习的神秘面纱,帮助新手学习该领域的核心概念,本文会介绍十种不同的机器学习方法,包括简单描述和可视化等,并一一举例说明。

读芯术 ·  2019-06-14 13:46:01
不懂卷积神经网络?别怕,看完这几张萌图你就明白了!

这篇文章用最简明易懂的方式解释了卷积神经网络(CNN)的基本原理,并绕开了里面的数学理论。

佚名 ·  2019-05-17 15:48:16
Copyright©2005-2019 51CTO.COM 版权所有 未经许可 请勿转载