机器学习K-means算法在Python中的实现

作者: 佚名 2017-09-12 16:57:43

K-means算法简介

K-means是机器学习中一个比较常用的算法,属于无监督学习算法,其常被用于数据的聚类,只需为它指定簇的数量即可自动将数据聚合到多类中,相同簇中的数据相似度较高,不同簇中数据相似度较低。

K-menas的优缺点:

优点:

  • 原理简单
  • 速度快
  • 对大数据集有比较好的伸缩性

缺点:

  • 需要指定聚类 数量K
  • 对异常值敏感
  • 对初始值敏感

K-means的聚类过程

其聚类过程类似于梯度下降算法,建立代价函数并通过迭代使得代价函数值越来越小

  • 适当选择c个类的初始中心;
  • 在第k次迭代中,对任意一个样本,求其到c个中心的距离,将该样本归到距离最短的中心所在的类;
  • 利用均值等方法更新该类的中心值;
  • 对于所有的c个聚类中心,如果利用(2)(3)的迭代法更新后,值保持不变,则迭代结束,否则继续迭代。

该算法的***优势在于简洁和快速。算法的关键在于初始中心的选择和距离公式。

K-means 实例展示

python中km的一些参数:

  1. sklearn.cluster.KMeans( 
  2.  
  3.     n_clusters=8, 
  4.  
  5.     init='k-means++'
  6.  
  7.     n_init=10, 
  8.  
  9.     max_iter=300, 
  10.  
  11.     tol=0.0001, 
  12.  
  13.     precompute_distances='auto'
  14.  
  15.     verbose=0, 
  16.  
  17.     random_state=None, 
  18.  
  19.     copy_x=True
  20.  
  21.     n_jobs=1, 
  22.  
  23.     algorithm='auto' 
  24.  
  25.     )  
  • n_clusters: 簇的个数,即你想聚成几类
  • init: 初始簇中心的获取方法
  • n_init: 获取初始簇中心的更迭次数,为了弥补初始质心的影响,算法默认会初始10个质心,实现算法,然后返回***的结果。
  • max_iter: ***迭代次数(因为kmeans算法的实现需要迭代)
  • tol: 容忍度,即kmeans运行准则收敛的条件
  • precompute_distances:是否需要提前计算距离,这个参数会在空间和时间之间做权衡,如果是True 会把整个距离矩阵都放到内存中,auto 会默认在数据样本大于featurs*samples 的数量大于12e6 的时候False,False 时核心实现的方法是利用Cpython 来实现的
  • verbose: 冗长模式(不太懂是啥意思,反正一般不去改默认值)
  • random_state: 随机生成簇中心的状态条件。
  • copy_x: 对是否修改数据的一个标记,如果True,即复制了就不会修改数据。bool 在scikit-learn 很多接口中都会有这个参数的,就是是否对输入数据继续copy 操作,以便不修改用户的输入数据。这个要理解Python 的内存机制才会比较清楚。
  • n_jobs: 并行设置
  • algorithm: kmeans的实现算法,有:’auto’, ‘full’, ‘elkan’, 其中 ‘full’表示用EM方式实现

虽然有很多参数,但是都已经给出了默认值。所以我们一般不需要去传入这些参数,参数的。可以根据实际需要来调用。

下面展示一个代码例子

  1. from sklearn.cluster import KMeans 
  2.  
  3. from sklearn.externals import joblib 
  4.  
  5. from sklearn import cluster 
  6.  
  7. import numpy as np  
  8.   
  9.  
  10. # 生成10*3的矩阵 
  11.  
  12. data = np.random.rand(10,3) 
  13.  
  14. print data 
  15.  
  16. # 聚类为4类 
  17.  
  18. estimator=KMeans(n_clusters=4) 
  19.  
  20. # fit_predict表示拟合+预测,也可以分开写 
  21.  
  22. res=estimator.fit_predict(data) 
  23.  
  24. # 预测类别标签结果 
  25.  
  26. lable_pred=estimator.labels_ 
  27.  
  28. # 各个类别的聚类中心值 
  29.  
  30. centroids=estimator.cluster_centers_ 
  31.  
  32. # 聚类中心均值向量的总和 
  33.  
  34. inertia=estimator.inertia_  
  35.   
  36.  
  37. print lable_pred 
  38.  
  39. print centroids 
  40.  
  41. print inertia  
  42.   
  43.  
  44. 代码执行结果 
  45.  
  46. [0 2 1 0 2 2 0 3 2 0]  
  47.   
  48.  
  49. [[ 0.3028348   0.25183096  0.62493622] 
  50.  
  51. [ 0.88481287  0.70891813  0.79463764] 
  52.  
  53. [ 0.66821961  0.54817207  0.30197415] 
  54.  
  55. [ 0.11629904  0.85684903  0.7088385 ]] 
  56.  
  57. 0.570794546829  

为了更直观的描述,这次在图上做一个展示,由于图像上绘制二维比较直观,所以数据调整到了二维,选取100个点绘制,聚类类别为3类

  1. from sklearn.cluster import KMeans 
  2.  
  3. from sklearn.externals import joblib 
  4.  
  5. from sklearn import cluster 
  6.  
  7. import numpy as np 
  8.  
  9. import matplotlib.pyplot as plt  
  10.   
  11.  
  12. data = np.random.rand(100,2) 
  13.  
  14. estimator=KMeans(n_clusters=3) 
  15.  
  16. res=estimator.fit_predict(data) 
  17.  
  18. lable_pred=estimator.labels_ 
  19.  
  20. centroids=estimator.cluster_centers_ 
  21.  
  22. inertia=estimator.inertia_ 
  23.  
  24. #print res 
  25.  
  26. print lable_pred 
  27.  
  28. print centroids 
  29.  
  30. print inertia  
  31.   
  32.  
  33. for i in range(len(data)): 
  34.  
  35.     if int(lable_pred[i])==0: 
  36.  
  37.         plt.scatter(data[i][0],data[i][1],color='red'
  38.  
  39.     if int(lable_pred[i])==1: 
  40.  
  41.         plt.scatter(data[i][0],data[i][1],color='black'
  42.  
  43.     if int(lable_pred[i])==2: 
  44.  
  45.         plt.scatter(data[i][0],data[i][1],color='blue'
  46.  
  47. plt.show() 

可以看到聚类效果还是不错的,对k-means的聚类效率进行了一个测试,将维度扩宽到50维

对于***的数据,拟合时间还是能够接受的,可见效率还是不错,对模型的保存与其它的机器学习算法模型保存类似

  1. from sklearn.externals import joblib  
  2. joblib.dump(km,"model/km_model.m")   
机器学习 K-means算法 Python
上一篇:人工智能,将开启一场史无前例的职业大革命 下一篇:卷积神经网络如何进行图像识别
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

盘点人工智能十大经典应用领域、图解技术原理

本文通过案例分门别类地深入探讨人工智能的实际应用。案例甚多,此处所列举的仅是九牛一毛。本该按行业或业务对这些案例进行分类,但相反我选择按在行业或业务中最可能应用的顺序来分类。

Alex Castrounis ·  11h前
机器学习正在帮助Invisalign的患者呈现完美的微笑

Align Technology的移动应用程序可以帮助Invisalign佩戴者按时完成任务,而机器学习和其他功能则有助于吸引潜在消费者试用这款牙齿矫正设备。

Clint Boulton ·  17h前
5种用于Python的强化学习框架

从头开始编写自己的Reinforcement Learning实施可能会花费很多工作,但是您不需要这样做。 有许多出色,简单和免费的框架可让您在几分钟之内开始学习。

闻数起舞 ·  19h前
机器学习的中流砥柱:用于模型构建的基础架构工具有哪些?

人工智能(AI)和机器学习(ML)已然“渗透”到了各行各业,企业们期待通过机器学习基础架构平台,以推动人工智能在业务中的利用。

读芯术 ·  1天前
机器学习将给电力行业带来巨大变革

毫无疑问,能源的未来在于可持续、可靠和“智能”的发电和配电系统,以及主动而不是被动的网络。随着能源格局即将发生巨大变化,现在是结合机器学习和电网的优秀时机。

蒙光伟 ·  1天前
吐血整理:机器学习的30个基本概念,都在这里了(手绘图解)

本文主要介绍机器学习基础知识,包括名词解释(约30个)、基础模型的算法原理及具体的建模过程。

梅子行 毛鑫宇 ·  2天前
机器学习“七宗罪”:影响可信度的七个常见错误

机器学习是一个伟大的工具,它正在改变我们的世界。在许多优秀的应用中,机器学习(尤其是深度学习)比传统方法优越得多。从用于图像分类的Alex-Net到用于图像分割的U-Net,人们看到了计算机视觉和医学图像处理领域的巨大成功。

图灵联邦 ·  2天前
对象存储适合人工智能和机器学习的三个原因

如今,各种类型的企业都致力于采用人工智能和机器学习项目,但要发挥其真正的潜力,则需要克服重大的技术障碍。虽然计算基础设施通常是重点,但存储设施也同样重要。

Gary Ogasawara ·  3天前
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载