机器学习K-means算法在Python中的实现

作者: 佚名 2017-09-12 16:57:43

K-means算法简介

K-means是机器学习中一个比较常用的算法,属于无监督学习算法,其常被用于数据的聚类,只需为它指定簇的数量即可自动将数据聚合到多类中,相同簇中的数据相似度较高,不同簇中数据相似度较低。

K-menas的优缺点:

优点:

  • 原理简单
  • 速度快
  • 对大数据集有比较好的伸缩性

缺点:

  • 需要指定聚类 数量K
  • 对异常值敏感
  • 对初始值敏感

K-means的聚类过程

其聚类过程类似于梯度下降算法,建立代价函数并通过迭代使得代价函数值越来越小

  • 适当选择c个类的初始中心;
  • 在第k次迭代中,对任意一个样本,求其到c个中心的距离,将该样本归到距离最短的中心所在的类;
  • 利用均值等方法更新该类的中心值;
  • 对于所有的c个聚类中心,如果利用(2)(3)的迭代法更新后,值保持不变,则迭代结束,否则继续迭代。

该算法的***优势在于简洁和快速。算法的关键在于初始中心的选择和距离公式。

K-means 实例展示

python中km的一些参数:

  1. sklearn.cluster.KMeans( 
  2.  
  3.     n_clusters=8, 
  4.  
  5.     init='k-means++'
  6.  
  7.     n_init=10, 
  8.  
  9.     max_iter=300, 
  10.  
  11.     tol=0.0001, 
  12.  
  13.     precompute_distances='auto'
  14.  
  15.     verbose=0, 
  16.  
  17.     random_state=None, 
  18.  
  19.     copy_x=True
  20.  
  21.     n_jobs=1, 
  22.  
  23.     algorithm='auto' 
  24.  
  25.     )  
  • n_clusters: 簇的个数,即你想聚成几类
  • init: 初始簇中心的获取方法
  • n_init: 获取初始簇中心的更迭次数,为了弥补初始质心的影响,算法默认会初始10个质心,实现算法,然后返回***的结果。
  • max_iter: ***迭代次数(因为kmeans算法的实现需要迭代)
  • tol: 容忍度,即kmeans运行准则收敛的条件
  • precompute_distances:是否需要提前计算距离,这个参数会在空间和时间之间做权衡,如果是True 会把整个距离矩阵都放到内存中,auto 会默认在数据样本大于featurs*samples 的数量大于12e6 的时候False,False 时核心实现的方法是利用Cpython 来实现的
  • verbose: 冗长模式(不太懂是啥意思,反正一般不去改默认值)
  • random_state: 随机生成簇中心的状态条件。
  • copy_x: 对是否修改数据的一个标记,如果True,即复制了就不会修改数据。bool 在scikit-learn 很多接口中都会有这个参数的,就是是否对输入数据继续copy 操作,以便不修改用户的输入数据。这个要理解Python 的内存机制才会比较清楚。
  • n_jobs: 并行设置
  • algorithm: kmeans的实现算法,有:’auto’, ‘full’, ‘elkan’, 其中 ‘full’表示用EM方式实现

虽然有很多参数,但是都已经给出了默认值。所以我们一般不需要去传入这些参数,参数的。可以根据实际需要来调用。

下面展示一个代码例子

  1. from sklearn.cluster import KMeans 
  2.  
  3. from sklearn.externals import joblib 
  4.  
  5. from sklearn import cluster 
  6.  
  7. import numpy as np  
  8.   
  9.  
  10. # 生成10*3的矩阵 
  11.  
  12. data = np.random.rand(10,3) 
  13.  
  14. print data 
  15.  
  16. # 聚类为4类 
  17.  
  18. estimator=KMeans(n_clusters=4) 
  19.  
  20. # fit_predict表示拟合+预测,也可以分开写 
  21.  
  22. res=estimator.fit_predict(data) 
  23.  
  24. # 预测类别标签结果 
  25.  
  26. lable_pred=estimator.labels_ 
  27.  
  28. # 各个类别的聚类中心值 
  29.  
  30. centroids=estimator.cluster_centers_ 
  31.  
  32. # 聚类中心均值向量的总和 
  33.  
  34. inertia=estimator.inertia_  
  35.   
  36.  
  37. print lable_pred 
  38.  
  39. print centroids 
  40.  
  41. print inertia  
  42.   
  43.  
  44. 代码执行结果 
  45.  
  46. [0 2 1 0 2 2 0 3 2 0]  
  47.   
  48.  
  49. [[ 0.3028348   0.25183096  0.62493622] 
  50.  
  51. [ 0.88481287  0.70891813  0.79463764] 
  52.  
  53. [ 0.66821961  0.54817207  0.30197415] 
  54.  
  55. [ 0.11629904  0.85684903  0.7088385 ]] 
  56.  
  57. 0.570794546829  

为了更直观的描述,这次在图上做一个展示,由于图像上绘制二维比较直观,所以数据调整到了二维,选取100个点绘制,聚类类别为3类

  1. from sklearn.cluster import KMeans 
  2.  
  3. from sklearn.externals import joblib 
  4.  
  5. from sklearn import cluster 
  6.  
  7. import numpy as np 
  8.  
  9. import matplotlib.pyplot as plt  
  10.   
  11.  
  12. data = np.random.rand(100,2) 
  13.  
  14. estimator=KMeans(n_clusters=3) 
  15.  
  16. res=estimator.fit_predict(data) 
  17.  
  18. lable_pred=estimator.labels_ 
  19.  
  20. centroids=estimator.cluster_centers_ 
  21.  
  22. inertia=estimator.inertia_ 
  23.  
  24. #print res 
  25.  
  26. print lable_pred 
  27.  
  28. print centroids 
  29.  
  30. print inertia  
  31.   
  32.  
  33. for i in range(len(data)): 
  34.  
  35.     if int(lable_pred[i])==0: 
  36.  
  37.         plt.scatter(data[i][0],data[i][1],color='red'
  38.  
  39.     if int(lable_pred[i])==1: 
  40.  
  41.         plt.scatter(data[i][0],data[i][1],color='black'
  42.  
  43.     if int(lable_pred[i])==2: 
  44.  
  45.         plt.scatter(data[i][0],data[i][1],color='blue'
  46.  
  47. plt.show() 

可以看到聚类效果还是不错的,对k-means的聚类效率进行了一个测试,将维度扩宽到50维

对于***的数据,拟合时间还是能够接受的,可见效率还是不错,对模型的保存与其它的机器学习算法模型保存类似

  1. from sklearn.externals import joblib  
  2. joblib.dump(km,"model/km_model.m")   
机器学习 K-means算法 Python
上一篇:人工智能,将开启一场史无前例的职业大革命 下一篇:卷积神经网络如何进行图像识别
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

意料之外 情理之中:解读Gartner 2020年数据科学和机器学习平台魔力象限

最近Gartner发布了数据科学和机器学习(DSML)平台魔力象限报告。数据科学、机器学习和人工智能的市场格局极为分散,竞争激烈且难以理解。Gartner尝试根据明确定义的标准对厂商进行了排名。

佚名 ·  2天前
DeepMind发布神经网络、强化学习库,网友:推动JAX发展

JAX由谷歌提出,是TensorFlow的简化库。结合了针对线性代数的编译器XLA,和自动区分本地 Python 和 Numpy 代码的库Autograd,在高性能的机器学习研究中使用。

十三 ·  2天前
4个步骤成功构建出一个机器学习团队

对一个公司来说,如何从0到1构建一个机器学习团队,是很多公司非常头疼的问题,这篇文章给出了一些建议,对求职者来说,同样具有参考价值。

AI公园 ·  2天前
在云端的优秀机器学习服务

云中的一些优秀机器学习服务可以使用户能够更好地分析数据,并获得新的见解。用户通过云计算访问这些服务在成本和工作时间方面往往是高效的。

Sean Michael Kerner ·  4天前
算法攻破人脸识别「口罩」难题,两天落地千人小区准确率达97% | AI 战疫

日益成熟的人工智能,正成为抗击新冠肺炎疫情战线上一群特别的「逆行者」。

Synced ·  2020-02-18 14:00:01
高效的机器学习研究者,应该具备这 6 个习惯

一名优秀的机器学习研究员有哪些特质?是码力超强?还是理论功底一骑绝尘?码力和理论固然重要,但是良好的习惯才应该是检验是否优秀的唯一标准。

AI科技评论 ·  2020-02-18 10:11:11
机器学习第一步,这是一篇手把手的随机森林入门实战

到了 2020 年,我们已经能找到很多好玩的机器学习教程。本文则从最流行的随机森林出发,手把手教你构建一个模型,它的完整流程到底是什么样的。

机器之心 ·  2020-02-17 15:05:28
精心整理,机器学习的3大学习资源

机器学习有无尽可能性,该领域薪资高,工作者在工作上能享受到极大乐趣,这让他们大多数时候感觉不像工作。然而,零经验者如何在合理时间内掌握机器学习?本文会给出答案。

读芯术 ·  2020-02-16 20:39:07
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载