深度学习可视化工具大盘点(附资源)

作者: 佚名 2017-09-01 10:11:04

深度网络对机器学习研究和应用领域产生了巨大的影响,与此同时却无法很清晰地解释深度网络的来龙去脉。人们一直致力于更透彻地去理解其中复杂的过程。由于人类对于世界的认知和感受主要来自于视觉,良好的可视化可以有效的帮助人们理解深度网络,并进行有效的优化和调节。本文主要基于ICML可视化的workshop和查到的相关论文,分享一下提到的一些先进的可视化概念和方法。

内容主要参考:https://icmlviz.github.io/

ACTIVIS

Facebook 研发的交互式深度学习可视化系统,可以对生产环境中的大规模模型以及器运行的结果进行生动直观的呈现。这一系统可以支持四个方面的可视化。

  • 模型架构及其对应的计算图概览
  • 用于审视激活情况的神经元激活矩阵、以及投影到2D的可视化
  • 可以对于每一个实例结果进行可视化分析
  • 支持增加不同的实例来对不同的实例、子集、类型的激活模式进行比较,寻找误分类的原因

Grad-CAM

Grad-CAM是指Gradient-weighted Class Activation Mapping,研究人员提出利用这种梯度权重激活映射来对卷积神经网络的分类进行解释,在输入的图片中粗略地显示出模型预测出的类别对应的重要性区间。这种方式可以广泛试用于CNN模型家族的模型预测可视化过程。

上图中可以看到对于猫和狗不同的分类,显示出的置信区域也各部相同。同时还能显示视觉问答的过程:

Deep View

研究人员基于Deep View这一可视化工具研究了训练过程中深度网络的进化情况。利用判别矩阵和密度矩阵分别评价神经元和输出特征图在训练中的进化过程,总而建立了十分细致的视觉分析框架,能够有效展示模型在训练过程中局部和全局的特征变化。

参考:

https://www3.cs.stonybrook.edu/~mueller/people/https://101.96.8.164/icmlviz.github.io/assets/papers/2.pdf

一个自然语言处理的交互式可视化工具

能可视化NLP系统的输出,帮助用户更好的理解对于文本数据的处理同时进行一些必要的修正。这样的反馈过程可以帮助改进模型的精度。

参考:https://arxiv.org/pdf/1707.01890v2.pdf

LSTMV

递归神经网络特别是长短时记忆网络是对于时序信号强有力的工具,可以有效的建立和表征时序输入的隐含模式。研究人员对于其中隐藏层随时间的变化十分感兴趣,这一工作主要聚焦于对递归神经网络中的隐藏层动力学可视化。用户可以利用这一工具针对性的选取输入范围并与相同模式的大数据集进行比较,同时还可以利用这一工具对独立的模式进行统计分析。

参考:https://lstm.seas.harvard.edu/

https://vcg.seas.harvard.edu/code-data

Deep Visualization Toolbox

这个工具箱可以对图像在深度学习网络中的各层输出进行直观的可视化:

参考:https://yosinski.com/deepvis

https://github.com/yosinski/deep-visualization-toolbox

https://deeplearning4j.org/overview

数据可视化

参考>>https://colah.github.io

深度学习 可视化工具
上一篇:IEEE论文提出径向变换实现图像增强 下一篇:苏宁体育Biu,无人店又来新伙伴
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

深度学习算法

深度学习算法在机器视觉中就如一个巧妙的接收转换器般的存在,它灵活、敏捷、“深度”与广度兼具,强悍的计算与预测能力可以称为其魅力之处。深度计算——可以集数亿个神经网络的自拟,对于数据、语音、图像等多种形式的资源进行分析、解释。

三姆森科技 ·  1天前
中美欧人工智能发展现状比较分析

从投资、人才、研究、硬件、应用、数据多个维度,系统对比中、美、欧人工智能发展现状,最终得出结论称,美国当前依然保持着世界人工智能发展总体领先地位,中国在一些重要领域与美国的差距缩小,欧盟在三者中相对落后。

王璐菲 ·  1天前
解锁人工智能、机器学习和深度学习

深度学习是机器学习的子集,而机器学习又是人工智能的子集,但是这些名称的起源来自一个有趣的历史。此外,还有一些引人入胜的技术特征,可将深度学习与其他类型的机器学习区分开来……对于技能水平较高的ML、DL或AI的任何人来说,这都是必不可少的工作知识。

佚名 ·  1天前
谈谈基于深度学习的目标检测网络为什么会误检,以及如何优化目标检测的误检问题

在训练人脸检测网络时,一般都会做数据增强,为图像模拟不同姿态、不同光照等复杂情况,这就有可能产生过亮的人脸图像,“过亮”的人脸看起来就像发光的灯泡一样。

刘冲 ·  2天前
报告指出:中国人工智能专利申请数量居全球首位

中国在自然语言处理、芯片技术、机器学习等10多个人工智能子领域的科研产出水平居于世界前列。而在人机交互、知识工程、机器人、计算机图形、计算理论领域,中国还需努力追赶。

Yu ·  3天前
深度学习(Deep learning)入门导读

2016年Google人工智能程序阿尔法围棋(AlphaGo)对战世界围棋选手李世石,最终以4:1的成绩获得胜利,这惊人的一幕将国内外研究和学习人工智能的热题推向了新的高潮。然而,何为深度学习?本文将揭开深度学习的面纱。

洛辰不才 ·  4天前
人工智能时代到来后,有哪些工作难以代替?

我们到底应该如何面对人工智能时代?尤其是哪些工作在这个时代难以代替?这是值得人们认真研究和解决的问题。

江东 ·  2021-04-12 10:05:31
启动机器学习/深度学习项目的八种方法

从探索性的数据分析到自动机器学习(AutoML),组织需要使用这些技术来推动其数据科学项目发展,并建立更好的模型。

李睿 ·  2021-04-12 09:00:00
Copyright©2005-2021 51CTO.COM 版权所有 未经许可 请勿转载