带着问题学Machine Learning:什么是机器学习

作者: 佚名 2017-08-17 13:26:34

带着问题学Machine Learning:什么是机器学习

机器学习是个难以接受的东西。如果有案例就好了,那就 lets go~

Q:什么是机器学习?

机器学习就是让计算机有像人一样的学习能力的技术,是从数据中寻找有用的知识的数据挖掘技术。

比如呢?运用机器学习技术,类似今日头条给我推我喜欢看的,并看不完的短视频,(害得我卸载了…)。比如说,淘宝知道你喜欢的衣服款式,老是在猜你喜欢那里出现你喜欢的。

Q:那机器学习的数据种类不同吧?

是的,很不一样。根据所学习的数据种类,可以分为监督学习、无监督学习和强化学习等。

Q:什么是监督学习?

监督学习,就是计算机在有结果标记的数据学习后,能预测数据结果的学习过程。

比如,预测数值型数据的回归,预测标称型数据的分类等。太抽象了…

对应的比如,图像处理,垃圾邮件的分类和拦截等

Q:什么是无监督学习?

无监督学习,就是计算机在没有结果标志的数据学习后,能获取有用数据的学习过程。

自然还有个半监督学习,介于两者之间。

比如,预测肿瘤的良性恶性、视频分析等

Q:什么是强化学习?

强化学习,跟无监督学习类似,没有结果标志的数据学习后,又跟监督学习一样,能预测数据结果。

这个’四不像’,被认为人类的主要学习模式之一。

自然也很复杂,涉及到的算法很多。下面聊聊常见的算法。

Q:监督学习和无监督学习中有哪些典型的问题?

在机器学习中有很多典型的问题,比如回归、分类、异常检测、聚类和降维等。自然每个问题,延伸出就是算法,所以也有对应的算法。

Q:什么是回归问题?

回归,都对线性回归有印象吧。回归是数学模型,用于统计的一种方法。是对一组因变量 Yn 和另一组自变量 Xn 之间关系的统计分析。

比如记得以前用 SPSS 的时候,回归统计人的体表面积与身高、体重有关系。从案例看出,回归多半用在监督学习。

Q:什么是分类问题?

分类包括有监督分类和无监督分类。

有监督分类,就是大家一直知道的。术语表达,是指对于指定的模式进行识别的有监督识别问题。这类分类问题,也可以想回归问题那样,被看作是函数近似问题。对,在经过已知样本数据的训练,只能对未知样本估计分类,无法对分类近似分类。

无监督分类,没有任何先验条件,仅仅根据数据,(盲目)的分类。其分类结果肯定是不同纬度的分类,但不能确定分类的类别属性。

Q:什么是异常检测问题?

异常检测,简单说,就是从一堆数据中区分异常值和正常值。术语表达,对数据集中其他项目的项目、事件等识别。比如文本错误问题。

Q:什么是聚类问题?

聚类,和分类问题相似。但属于一种无监督学习。是把相似的样本分成不同的组别或者更多子集。关键词:相似,所以相同组别(子集)的样本具有相似的性质,不同组别(子集)的样本之间具有不同的性质。在聚类问题中,如何计算样本之间的相似度是很重要的。

Q:什么是降维问题?

降维,其目的很直接,提取关键信息。术语表达,是降低样本的个数,得到一组变量的过程。自然,根据样本种类的不同,(我们上面介绍 监督学习 和 无监督学习 ,可以复习下)降维的问题也要分为 监督降维 和 无监督降维。降维有两种方法:特征选择和特征提取。

特征选择,是假定样本数据中包含大量冗余和无关数据,从而找出主要数据的方法。

特征提取,是从高维数据中提取关键信息,转为低维数据进而求解的方法。过程中伴随着除去数据,创建新数据。

广泛用在图像识别领域。

机器学习 监督学习 强化学习
上一篇:2017年为什么我一定要学深度学习 下一篇:在人工智能的浪潮中,我们会失业吗?
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

人工智能能否使机器具有流体智力?

麻省理工学院和奥地利研究人员为灵活的人工智能创造了“液体”机器学习。

千家网 ·  2021-06-01 10:38:55
高真实感、全局一致、外观精细,面向模糊目标的NeRF方案出炉

自 NeRF 被提出后,有多项研究对其加以改进。在本篇论文中,上海科技大学的研究者提出了首个将显式不透明监督和卷积机制结合到神经辐射场框架中以实现高质量外观的方案。

Haimin Luo等 ·  2021-06-01 09:57:39
大脑模拟NLP,高德纳奖得主:神经元集合演算用于句子解析

一个简单的大脑模型为人工智能研究提供了新的方向。世界顶尖计算机科学理论学家、哥德尔奖和高德纳奖获得者、哥伦比亚大学计算机科学教授 Christos Papadimitriou 关于「大脑中单词表征」的演讲。

Ben Dickson ·  2021-06-01 09:39:24
打破“维度的诅咒”,机器学习降维方法好

机器学习算法因为能够从具有许多特征的数据集中找出相关信息而大火,这些数据集往往包括了几十行的表格或者数百万像素的图像。

水木番 ·  2021-05-31 09:41:17
工业界中的机器学习是什么样子的

本文结合作者十余年的工业界经历,从工业界的视角来尝试给些思考和总结,欢迎大家批评讨论。

龙星镖局 ·  2021-05-31 09:26:01
最喜欢随机森林?TensorFlow开源决策森林库TF-DF

近日,TensorFlow 开源了 TensorFlow 决策森林 (TF-DF)。TF-DF 是用于训练、服务和解释决策森林模型(包括随机森林和梯度增强树)生产方面的 SOTA 算法集合。

机器之心 ·  2021-05-28 17:18:44
人工智能、机器学习和物联网等技术改善健康的7种方式

尽管老生常谈,但我们还是要说:让我们不健康的不是技术,而是我们的生活习惯,事实上,技术可以让我们变得更健康。

佚名 ·  2021-05-28 11:42:58
利用AI识别城市建筑物特征,预测其面对地震等灾难时的风险

本文介绍了美国国家科学基金会开发的可自动识别城市建筑的特征、检测城市建筑在地震、飓风或海啸中可能面临风险的大规模人工智能建筑识别工具。

佚名 ·  2021-05-28 10:52:09
Copyright©2005-2021 51CTO.COM 版权所有 未经许可 请勿转载