带着问题学Machine Learning:什么是机器学习

作者: 佚名 2017-08-17 13:26:34

带着问题学Machine Learning:什么是机器学习

机器学习是个难以接受的东西。如果有案例就好了,那就 lets go~

Q:什么是机器学习?

机器学习就是让计算机有像人一样的学习能力的技术,是从数据中寻找有用的知识的数据挖掘技术。

比如呢?运用机器学习技术,类似今日头条给我推我喜欢看的,并看不完的短视频,(害得我卸载了…)。比如说,淘宝知道你喜欢的衣服款式,老是在猜你喜欢那里出现你喜欢的。

Q:那机器学习的数据种类不同吧?

是的,很不一样。根据所学习的数据种类,可以分为监督学习、无监督学习和强化学习等。

Q:什么是监督学习?

监督学习,就是计算机在有结果标记的数据学习后,能预测数据结果的学习过程。

比如,预测数值型数据的回归,预测标称型数据的分类等。太抽象了…

对应的比如,图像处理,垃圾邮件的分类和拦截等

Q:什么是无监督学习?

无监督学习,就是计算机在没有结果标志的数据学习后,能获取有用数据的学习过程。

自然还有个半监督学习,介于两者之间。

比如,预测肿瘤的良性恶性、视频分析等

Q:什么是强化学习?

强化学习,跟无监督学习类似,没有结果标志的数据学习后,又跟监督学习一样,能预测数据结果。

这个’四不像’,被认为人类的主要学习模式之一。

自然也很复杂,涉及到的算法很多。下面聊聊常见的算法。

Q:监督学习和无监督学习中有哪些典型的问题?

在机器学习中有很多典型的问题,比如回归、分类、异常检测、聚类和降维等。自然每个问题,延伸出就是算法,所以也有对应的算法。

Q:什么是回归问题?

回归,都对线性回归有印象吧。回归是数学模型,用于统计的一种方法。是对一组因变量 Yn 和另一组自变量 Xn 之间关系的统计分析。

比如记得以前用 SPSS 的时候,回归统计人的体表面积与身高、体重有关系。从案例看出,回归多半用在监督学习。

Q:什么是分类问题?

分类包括有监督分类和无监督分类。

有监督分类,就是大家一直知道的。术语表达,是指对于指定的模式进行识别的有监督识别问题。这类分类问题,也可以想回归问题那样,被看作是函数近似问题。对,在经过已知样本数据的训练,只能对未知样本估计分类,无法对分类近似分类。

无监督分类,没有任何先验条件,仅仅根据数据,(盲目)的分类。其分类结果肯定是不同纬度的分类,但不能确定分类的类别属性。

Q:什么是异常检测问题?

异常检测,简单说,就是从一堆数据中区分异常值和正常值。术语表达,对数据集中其他项目的项目、事件等识别。比如文本错误问题。

Q:什么是聚类问题?

聚类,和分类问题相似。但属于一种无监督学习。是把相似的样本分成不同的组别或者更多子集。关键词:相似,所以相同组别(子集)的样本具有相似的性质,不同组别(子集)的样本之间具有不同的性质。在聚类问题中,如何计算样本之间的相似度是很重要的。

Q:什么是降维问题?

降维,其目的很直接,提取关键信息。术语表达,是降低样本的个数,得到一组变量的过程。自然,根据样本种类的不同,(我们上面介绍 监督学习 和 无监督学习 ,可以复习下)降维的问题也要分为 监督降维 和 无监督降维。降维有两种方法:特征选择和特征提取。

特征选择,是假定样本数据中包含大量冗余和无关数据,从而找出主要数据的方法。

特征提取,是从高维数据中提取关键信息,转为低维数据进而求解的方法。过程中伴随着除去数据,创建新数据。

广泛用在图像识别领域。

机器学习 监督学习 强化学习
上一篇:2017年为什么我一定要学深度学习 下一篇:在人工智能的浪潮中,我们会失业吗?
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

机器学习的中流砥柱:用于模型构建的基础架构工具有哪些?

人工智能(AI)和机器学习(ML)已然“渗透”到了各行各业,企业们期待通过机器学习基础架构平台,以推动人工智能在业务中的利用。

读芯术 ·  22h前
机器学习将给电力行业带来巨大变革

毫无疑问,能源的未来在于可持续、可靠和“智能”的发电和配电系统,以及主动而不是被动的网络。随着能源格局即将发生巨大变化,现在是结合机器学习和电网的优秀时机。

蒙光伟 ·  1天前
吐血整理:机器学习的30个基本概念,都在这里了(手绘图解)

本文主要介绍机器学习基础知识,包括名词解释(约30个)、基础模型的算法原理及具体的建模过程。

梅子行 毛鑫宇 ·  1天前
机器学习“七宗罪”:影响可信度的七个常见错误

机器学习是一个伟大的工具,它正在改变我们的世界。在许多优秀的应用中,机器学习(尤其是深度学习)比传统方法优越得多。从用于图像分类的Alex-Net到用于图像分割的U-Net,人们看到了计算机视觉和医学图像处理领域的巨大成功。

图灵联邦 ·  2天前
对象存储适合人工智能和机器学习的三个原因

如今,各种类型的企业都致力于采用人工智能和机器学习项目,但要发挥其真正的潜力,则需要克服重大的技术障碍。虽然计算基础设施通常是重点,但存储设施也同样重要。

Gary Ogasawara ·  3天前
机器学习:有监督和无监督之间有什么区别

机器学习是人工智能的一个子集,它通过示例和经验教会计算机执行任务,是研究和开发的热门领域。我们每天使用的许多应用程序都使用机器学习算法,包括AI助手,Web搜索和机器翻译。

AI国际站 ·  3天前
机器学习的七原罪

机器学习是一种伟大的工具,正在改变着我们的世界。 在许多伟大的应用中,机器(尤其是深度学习)已被证明优于传统方法。 从用于图像分类的Alex-Net到用于图像分割的U-Net,我们看到了计算机视觉和医学图像处理领域的巨大成功。 不过,我看到机器学习方法每天都在失败。 在许多这样的情况下,人们迷上了机器学习的七大罪过之一。

闻数起舞 ·  3天前
为ML模型注入灵魂:基于MVP的超简单部署方案

开发一个出色的机器学习模型是一件棘手的事,但即使开发完成也不意味着工作的结束。在部署之前,它仍然毫无用处,他人可以轻易访问。

读芯术 ·  3天前
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载