寻找CNN的弱点,小心MNIST中的“套路”

作者: 冯超 2017-05-22 10:54:56

寻找CNN的弱点,小心MNIST中的“套路”

CNN是现在十分火热的模型,在很多图像检索问题上,CNN模型的效果在以往的基础上有了很大的提高,但是CNN毕竟没有把这些问题完全解决,CNN还是有它自己的弱点的。这个弱点也不能算作是它独有的问题,但是由于它的效果实在太好了,很多人甚至对它产生了迷信,因此这盆冷水就泼到它身上了。

大神们看到了CNN模型的强大,但忍不住提出一个问题:CNN有没有什么搞不定的地方?比方说我们用CNN构建了一个人脸识别的模型,在训练数据集和测试数据集上表现良好,但是会不会有一些用例是它会误判的,而且我们可以找到规律生成这些用例?

我们可以想象,如果我们对之前识别正确的数据做轻微的改动,那么它还是有可能识别正确的。于是我们就有了一个方案,我们每将图像做一点改动,就把图像传入CNN做一下测试,然后看看CNN的预测结果有没有发生改变,如果没有发生改变,我们就保存这个图像,接着我们再进行下一轮的改动,经过若干轮的改动后,我们把生成的图像输出出来看看图像会变成什么样子。

这里我们将采用MNIST为例,以下的就是我们的改动方案:

  1. 利用MNIST的训练集训练一个CNN的模型,我们的CNN模型结构是:conv32*3*3->relu->maxpool2*2->conv64*3*6->relu->maxpool2*2->fc256->dropout0.5->fc10。
  2. 找到一个训练数据,将其数据范围限定在0到1之间,我们对每一个像素点随机增减-0.1到0.1之间的一个数,这样得到64个随机的图像,然后经过CNN模型预测得到这64个图像的预测label,从中选择一个和原始label相同的图像。经过若干轮迭代后,我们就可以看看这个随机改变的数字变成了什么样子。

我们选择了一个数字0:

经过50轮迭代,我们得到了这样的图像:

经过100轮迭代,我们得到了这样的图像:

经过150轮迭代,我们得到了这样的图像:

经过200轮迭代,我们得到了这样的图像:

到此为止,可以看出这个数字还是隐约可见,但是实际上图像已经变得模糊不清,大量的杂乱信息混入其中,已经和原始的数字完全不同。

这个套路被称作“fool CNN”,用东北话说就是忽悠。继续迭代下去,我们还能生成出更精彩的图像。当然这也只是忽悠CNN模型的一种办法,我们还有其他的办法来生成图像。其他的办法这里就不再介绍了。关于这种忽悠,大神们也给出了和机器学习有关的解释:

CNN的模型说到底还是个判别式模型,如果我们把图像设为X,label设为y,CNN的模型就相当于求p(y|X)的值。判别式模型相当于描述“什么样的图像是这个label的图像”,而满足了这些条件的图像有时并不是具有真实label的那个图像。而上面的忽悠套路就是利用了这个漏洞。

上面的例子中,我们用这种fool的方法让一张模糊不清的图像保持了原来的label,同时我们也可以让一张不算模糊的图像被CNN错认成另外一个label。

比方说下面这张经过40轮迭代的图像被认成了6:

这些套路的出现都让我们对CNN有了一些警惕,如果想让CNN对手写数字完全hold住,我们还需要其他的方法辅助,不然的话这种意外总会发生。

那么有没有什么方法能解决这样的问题呢?

深度学习 CNN MNIST
上一篇:深度学习的难点:神经网络越深,优化问题越难 下一篇:AWS上搭建深度学习主机(Windows版)
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

体验中国自主知识产权天元深度学习引擎与TensorFlow,PyTorch的对比

深度学习驱动之下最早创业的中国AI独角兽旷视,宣布开源自研深度学习框架MegEngine(Brain++核心组件之一),中文名天元——取自围棋棋盘中心点的名称。

尹成 ·  2天前
2020年深度学习优秀GPU一览,看看哪一款最适合你!

如果你准备进入深度学习,什么样的GPU才是最合适的呢?下面列出了一些适合进行深度学习模型训练的GPU,并将它们进行了横向比较,一起来看看吧!

大数据文摘 ·  3天前
清华开源Jittor:首个国内高校自研深度学习框架,一键转换PyTorch

深度学习框架越来越多,主导的团队也从高校研究机构渐渐转向了科技巨头。但是,学界在这一领域的力量不容忽视。今日。清华大学开发了一个名为计图(Jittor)的深度学习框架。

佚名 ·  2020-03-20 14:33:29
一行代码让性能提升2倍 精选

如果现在向你推荐一款神器,可以实现训练速度翻倍,访存效率翻倍,你心动吗?心动不如行动,来和我一起看看这款神器——基于PaddlePaddle核心框架的自动混合精度技术,简称飞桨 AMP 技术。

佚名 ·  2020-03-13 13:23:42
Facebook研究开放三个新框架,让深度学习更容易

你知道吗?微软、谷歌、Facebook、亚马逊、Uber等科技巨头的研究部门已经成为人工智能(AI)领域开源框架最活跃的贡献者之一。

读芯术 ·  2020-03-10 13:27:28
迁移学习,让深度学习不再困难……

在不远的过去,数据科学团队需要一些东西来有效地利用深度学习:新颖的模型架构,很可能是内部设计的;访问大型且可能是专有的数据集;大规模模型训练所需的硬件或资金。

读芯术 ·  2020-03-02 17:03:32
国产深度学习框架MegEngine,三月底即将开源

2020 年我们应该选择哪一种深度学习框架?现在又有了一个新选择,据可靠消息,来自旷视 Brain++的 核心深度学习框架即将于 3 月底开源。

Synced ·  2020-02-28 15:20:38
从TensorFlow到Theano:横向对比七大深度学习框架

最近,来自数据科学公司 Silicon Valley Data Science 的数据工程师 Matt Rubashkin(UC Berkeley 博士)为我们带来了深度学习 7 种流行框架的深度横向对比,希望本文能对你带来帮助。

AI小师弟 ·  2020-02-25 15:04:48
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载