AWS上搭建深度学习主机(Windows版)

作者: Deeplayer 2017-05-22 12:30:15

本文简单介绍一下如何租赁并使用 Amazon EC2 P2 实例:

p2.xlarge 搭载了一块12G 显存的 Tesla K80 显卡。上图中的价格是Linux操作系统上的价格,Windows上会稍贵一点,p2.xlarge 价格是 $1.084 每小时,这也是我选择的实例。不过为了降低费用,我选择的是竞价实例。这样一来价格可以低至 $0.2746(可能会有所波动)。

下面介绍具体流程:

1. 注册账号

首先要在AWS上注册一个账号,并且需要绑定一张可以支付美元的 Visa 或 Mastercard 信用卡。注册好之后需要请求提高限制,填写区域的时候填弗吉尼亚北部或者俄勒冈,然后在 New limit value 一栏里填1,填好后 submit 一下就行了。然后就是等候通过,我当时等了大概2个小时。

2. 开启实例

打开 EC2 控制面板,如下:

然后选择左侧栏的竞价请求(如果你点击"启动实例"的蓝色按钮,你将进行正常的实例开启进去之后选择操作系统,然后一路进行下去就行,过程中需要创建并下载秘钥对),进去之后,点击"请求竞价实例"的蓝色按钮。然后开始填写,其中AMI选择你想要的(选择Windows系统时一定要带有桌面!),其他按如下填写就行:

然后进入下一页,EBS 卷大小选大一点,比如500G,如果你选的 Windows 系统那就是 C 盘的大小。你也可以再添加其他卷(盘)。接下来 "密钥对名称" 那一栏,没有的话就创建一下,然后下载保存好,后面会用到。"安全组" 一栏可以 default 或者创建一个。 "有效时间" 自己决定就好,反正中途可以自行结束。然后点击审核按钮,然后点击启动。然后你会看到如下页面:

看到状态激活后,点击红框框里的东西,然后你会看到如下页面(刚开始会进行2轮状态检查,全部通过后就是下面这张图):

一旦状态检查通过后,便开始计费了(不足一小时按一小时计费)。下面就可以进行远程桌面连接了。

Note: 竞价实例虽然便宜,但是一旦开启后不能停止,只能终止,一旦终止所有的在远程系统上的配置、数据都将清空,你只能重新开启一次竞价请求。在开启实例之前,如果你有无法从网上直接下载的数据,那么一定要在开启实例之前把所有数据传到网上(如 Google drive 或者 Dropbox 或者百度盘),然后在服务器上下载这些数据,以节省开支。

3. 远程桌面连接

点击上面那张图里的 "连接" 按钮,然后下载远程桌面连接程序,顺便获取一下登陆密码,这时就需要用到之前下载的秘钥对。运行远程桌面连接程序,选择Administrator,然后输入密码。连接成功后,你就可以远程控制服务器了(桌面上的 Chrome,NV 和 Pycharm 都是我后装的):

4. 深度学习环境配置(Windows 10)

由于我的主机是 Windows 10 系统,所以我就介绍一下 Windows 10 下 GPU版的 Tensorflow + keras 的安装。

Step 1: 安装 Python 3.5.2

Step 2: 安装 Visual Studio 2015 (C++ 部分就行)

Step 3: 安装 CUDA Toolkit 8.0(假设安装路径为: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0)

Step 4: 下载库 cuDNN v5.1,然后将里面的三个文件夹复制到上一步的路径里,如下:

Step 5: 环境变量,确保如下就行:

Step 5: 安装 Anaconda,然后如下:

创建 conda 环境,命令行里输入: conda create -n tensorflow-gpu python=3.5.2

激活环境:activate tensorflow-gpu

安装 Tensorflow:pip install tensorflow-gpu

安装 Keras:pip install keras

Step 6: 安装 Python IDE,如 Pycharm。

深度学习 人工智能
上一篇:寻找CNN的弱点,小心MNIST中的“套路” 下一篇:TensorFlow实现基于深度学习的图像补全
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

11个主流AI聊天机器人平台,你绝不能错过

人工智能聊天机器人掀起了一场用户体验革命。只要用户需要,机器人就能提供有用的信息。一些企业应用AI聊天机器人为客户提供积极有益的帮助,企业也因此得到了长足的发展。

读芯术 ·  17h前
5G自动驾驶什么样?韩国测试得出这样的结果

自动驾驶与5G的产业发展备受关注,而两者结合会有什么样的效果,韩国企业近日进行了一番探索。韩媒报道称,10月10日,LG U+自动驾驶汽车在首尔麻谷LG科学园一带的普通公路上进行了测试。

佚名 ·  17h前
全球十大AI训练芯片大盘点

AI芯片哪家强?现在,有直接的对比与参考了。英国一名资深芯片工程师James W. Hanlon,盘点了当前十大AI训练芯片。

乾明 ·  19h前
模型仅1MB,更轻量的人脸检测模型开源,效果不弱于主流算法

AI模型越来越小,需要的算力也也来越弱,但精度依旧有保障。最新代表,是一个刚在GitHub上开源的中文项目:一款超轻量级通用人脸检测模型。

乾明 ·  19h前
人工智能遇冷,自动驾驶受阻?

2016到2019,人工智能经历了梦幻般的三年,但人工智能的历史规律告诉我们:高潮过后可能会引来新的一波沉寂,人工智能助推下的自动驾驶也会受到波及。

佚名 ·  23h前
非监督学习最强攻略

本次主要讲解的内容是机器学习里的非监督学习经典原理与算法,非监督,也就是没有target(标签)的算法模型。

SAMshare ·  23h前
PyTorch终于能用上谷歌云TPU,推理性能提升4倍,该如何薅羊毛?

Facebook在PyTorch开发者大会上正式推出了PyTorch 1.3,并宣布了对谷歌云TPU的全面支持,而且还可以在Colab中调用云TPU。

晓查 ·  1天前
500亿参数,支持103种语言:谷歌推出「全球文字翻译」模型

由于缺乏平行数据,小语种的翻译一直是一大难题。来自谷歌的研究者提出了一种能够翻译 103 种语言的大规模多语言神经机器翻译模型,在数据丰富和匮乏的语种翻译中都实现了显著的性能提升。

机器之心 ·  2天前
Copyright©2005-2019 51CTO.COM 版权所有 未经许可 请勿转载