用十张图解释机器学习的基本概念

作者: Maybe2030 2017-04-19 10:55:20

在解释机器学习的基本概念的时候,我发现自己总是回到有限的几幅图中。以下是我认为最有启发性的条目列表。  

Test and training error

Test and training error

为什么低训练误差并不总是一件好的事情呢:上图以模型复杂度为变量的测试及训练错误函数。

Under and overfitting

Under and overfitting

低度拟合或者过度拟合的例子。上图多项式曲线有各种各样的命令M,以红色曲线表示,由绿色曲线适应数据集后生成。  

Occam’s razor

Occam’s razor

上图为什么贝叶斯推理可以具体化奥卡姆剃刀原理。这张图给了为什么复杂模型原来是小概率事件这个问题一个基本的直观的解释。水平轴代表了可能的数据集D空间。贝叶斯定理以他们预测的数据出现的程度成比例地反馈模型。这些预测被数据D上归一化概率分布量化。数据的概率给出了一种模型Hi,P(D|Hi)被称作支持Hi模型的证据。一个简单的模型H1仅可以做到一种有限预测,以P(D|H1)展示;一个更加强大的模型H2,举例来说,可以比模型H1拥有更加自由的参数,可以预测更多种类的数据集。这也表明,无论如何,H2在C1域中对数据集的预测做不到像H1那样强大。假设相等的先验概率被分配给这两种模型,之后数据集落在C1区域,不那么强大的模型H1将会是更加合适的模型。  

Feature combinations

Feature combinations

(1)为什么集体相关的特征单独来看时无关紧要,这也是(2)线性方法可能会失败的原因。从Isabelle Guyon特征提取的幻灯片来看。  

Irrelevant features

Irrelevant features

为什么无关紧要的特征会损害KNN,聚类,以及其它以相似点聚集的方法。左右的图展示了两类数据很好地被分离在纵轴上。右图添加了一条不切题的横轴,它破坏了分组,并且使得许多点成为相反类的近邻。  

Basis functions

Basis functions

非线性的基础函数是如何使一个低维度的非线性边界的分类问题,转变为一个高维度的线性边界问题。Andrew Moore的支持向量机SVM(Support Vector Machine)教程幻灯片中有:一个单维度的非线性带有输入x的分类问题转化为一个2维的线性可分的z=(x,x^2)问题。  

Discriminative vs. Generative

Discriminative vs. Generative

为什么判别式学习比产生式更加简单:上图这两类方法的分类条件的密度举例,有一个单一的输入变量x(左图),连同相应的后验概率(右图)。注意到左侧的分类条件密度p(x|C1)的模式,在左图中以蓝色线条表示,对后验概率没有影响。右图中垂直的绿线展示了x中的决策边界,它给出了最小的误判率。  

Loss functions

Loss functions

学习算法可以被视作优化不同的损失函数:上图应用于支持向量机中的“铰链”错误函数图形,以蓝色线条表示,为了逻辑回归,随着错误函数被因子1/ln(2)重新调整,它通过点(0,1),以红色线条表示。黑色线条表示误分,均方误差以绿色线条表示。 

Geometry of least squares

Geometry of least squares

上图带有两个预测的最小二乘回归的N维几何图形。结果向量y正交投影到被输入向量x1和x2所跨越的超平面。投影y^代表了最小二乘预测的向量。  

Sparsity

Sparsity

为什么Lasso算法(L1正规化或者拉普拉斯先验)给出了稀疏的解决方案(比如:带更多0的加权向量):上图lasso算法的估算图像(左)以及岭回归算法的估算图像(右)。展示了错误的等值线以及约束函数。分别的,当红色椭圆是最小二乘误差函数的等高线时,实心的蓝色区域是约束区域|β1| + |β2| ≤ t以及β12 + β22 ≤ t2。

机器学习 基本概念
上一篇:图解机器学习:神经网络和TensorFlow的文本分类 下一篇:人工智能在SEO技术中的应用
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

基于机器学习的自动漏洞修复分析方法

。在本文中,我们提出了一个基于机器学习的自动化框架来自动化电力公司的修复决策分析。我们将其应用于一家电力公司,并对从该公司获得的两个真实运行数据集进行了大量实验。结果表明,该解决方案具有很高的有效性。

佚名 ·  21h前
解锁人工智能、机器学习和深度学习

深度学习是机器学习的子集,而机器学习又是人工智能的子集,但是这些名称的起源来自一个有趣的历史。此外,还有一些引人入胜的技术特征,可将深度学习与其他类型的机器学习区分开来……对于技能水平较高的ML、DL或AI的任何人来说,这都是必不可少的工作知识。

佚名 ·  22h前
你只需要这三个机器学习工具

在这件作品中,我们将讨论唯一需要的3个机器学习工具,使您的团队在产品中应用机器学习方面取得成功。

闻数起舞 ·  22h前
开发板能这么用?美国学者用Jetson Nano支持假肢,控制每一根手指

在一篇新论文中,来自明尼苏达大学等机构的研究者提出了一种基于嵌入式深度学习控制的神经假肢实现。

佚名 ·  3天前
机器学习如何影响系统设计:Learned Index Structures浅析

本文简要介绍了Learned Index Structures的实现和优缺点,希望可以给大家带来一些系统设计的启发和思路。

作者Victor ·  3天前
吴恩达的二八定律:80%的数据+20%的模型=更好的机器学习

一个机器学习团队80%的工作应该放在数据准备上,确保数据质量是最重要的工作,每个人都知道应该如此做,但没人在乎。

新智元 ·  3天前
机器学习在铁路缺陷检测中的实际应用

本文介绍了在铁轨的超声波检测过程中有效使用机器学习技术自动检测缺陷的经验,并提出了一种使用数学建模为神经网络创建训练数据集的有效方法,为实际缺陷图的识别提供了更高精度的指标。文中训练神经网络运算的原型实例,其实际缺陷图的预测精度高达92%。

李睿 ·  3天前
人工智能进军“古玩鉴定”,人类职业再遭冲击?

近两年,人工智能的风头虽然偶被5G、自动驾驶等所盖过,但其发展和热度并未因此受到影响。

林中易木 ·  4天前
Copyright©2005-2021 51CTO.COM 版权所有 未经许可 请勿转载