开发者弹药库升级 推荐五个机器学习框架

作者: 三川 2017-04-17 13:59:37

业内知名数据科学网站 KDnuggests,昨日评选出了四月份“你不可忽视的五个机器学习项目”。

你可能没听过它们,但今天或许会考虑上手。至于那些不同生态、不同编程语言的工具——对于高手而言,即便没有使用需求,借鉴它们的代码执行也能为自己的产品开发带来许多灵感。

1. Scikit-plot

一帮缺乏艺术细胞的数据科学家,在某年某月某天突然心怀恐惧地意识到:可视化是数据科学最关键的东西之一,而不仅仅是一个加分项。

这就导致了 Scikit-plot 的诞生。

开发者弹药库升级 推荐五个机器学习框架

KDnuggests 副主编 Matthew Mayo 表示:“我注意到 Scikit-plot,是因为在 Reddit 上看到了它的作者的发帖,随后几乎立刻便上了手。”

该项目旨在为 Scikit-learn 用户提供一系列标准、实用的图表。这包括:

  • Elbow plots
  • Feature importance graphs
  • PCA projection plots
  • ROC curves
  • Silhouette plots

Scikit-plot 库有两个 API,其中一个与 Scikit-learn 紧密整合,以控制对其 API 的调用(Factory API)。另一个更传统(the Functions API)。但无论哪个都应当足够你使用。

它的快速上手指南在这里。

2. Scikit-feature

Scikit-feature 是 Python 的开源特征选取资源库,由亚利桑那州立大学的数据挖掘&机器学习实验室开发。它基于 scikit-learn、Numpy 以及 Scipy。Scikit-feature 内置约 40 个常见特征选取算法,包含传统算法以及一些结构式、流式的特征选取算法。

所有的特征选取方案,都有一个共同目标:找出多余、不相关的特征。这是一个相当热门的研究领域,对此有无数算法。

Scikit-feature 既适用于实用特征选取工程,也适合做算法研究。查看它支持的算法列表请点击这里。

一名为 Rubens Zimbres 的数据科学家曾如是说:

  • “在积累了经验,尝试了堆叠神经网络、并行神经网络、asymmetric configs、简单的神经网络、多层、dropout、激活函数等各种东西之后,我得出了一个结论:论效果,什么都比不上好的特征选取。”

3. Smile

Smile (Statistical Machine Intelligence and Learning Engine) 是一个快速、全面的机器学习系统。受益于先进的数据结构与算法,Smile 有最***的性能。

Smile 覆盖了机器学习的方方面面,包括分类、回归、聚类、关联规则挖掘、特征选取、流形学习(manifold learning,)、多维尺度分析(MDS)、遗传算法、missing value imputation、最邻近搜索等等。

开发者弹药库升级 推荐五个机器学习框架

对于使用 Java 和 Scala 的开发者,目前来看,Smile 是最合适的机器学习库。你可以把它看作是一个 JVM Scikit-learn。该项目有非常全面的官方教程,地址: https://haifengl.github.io/smile/。该教程不仅覆盖了 Smile 使用技巧,还是很高质量的机器学习算法入门资料。

如果你用 JVM 开发机器学习,Smile 绝对值得一试。事实上,如果你身在这个生态系统却没听过 Smile,才是一桩奇闻。

4. Gensim

Gensim 是一个针对话题建模、文件索引、在大语料库中进行相似性检索的 Python 算法库。目标受众是自然语言处理和信息检索社区。

Gensim 是个以完整性为目标的多面手。其开发团队称,它为“常见算法提供了高效的多核执行,比如 Latent Semantic Analysis (LSA/LSI/SVD), Latent Dirichlet Allocation (LDA), Random Projections (RP), Hierarchical Dirichlet Process (HDP) 或 word2vec 深度学习。”

Gensim 的文件在这里。KDnuggets 以前发过一篇教新手用 Gensim 搞话题建模的教程,请戳这里。

5. Sonnet

开发者弹药库升级 推荐五个机器学习框架

本月初,DeepMind 在官方博客宣布了开源 Sonnet 的消息。雷锋网***时间进行了报道:DeepMind发布Sonnet 帮你用TensorFlow快速搭建神经网络。

DeepMind 在博客中表示:

“对于 TensorFlow 而言,自从其在 2015 年末开源,一个由众多高级算法库组成的多样生态系统,便已围绕着它迅速发展起来。这些高级工具,允许常用任务以更简便、更快的方式完成,极大节省了开发者的时间精力。

作为该生态的新成员,Sonnet 也是如此。它与现有的神经网络算法库有许多共同点,但部分功能专为 DeepMind 的研究需要而设计。”

Sonnet 是基于 TensorFlow 的高级算法库。DeepMind 承认了它与一些现有产品比较类似,但整合了 DeepMind 研究所必须的功能与特性,比如允许特定模块在随机聚集的 Tensor 群组上运行:

“RNN 的状态,最适合于以异构 Tensor 集合来表示,用扁平列表来表示它们很容易会导致错误。Sonnet 提供了处理这些随机等级结构的功能,所以改变你的试验,使用另一种 RNN,并不需要繁冗地修改代码。DeepMind 已经对核心 TensorFlow 做了修改,以更好地支持这一使用情况。”

***,希望本文能够对你产生帮助。让你知道一些此前没听说过的算法库,或者你并没有意识到自己其实需要的功能。

机器学习 代码 TensorFlow
上一篇:Facebook的交互式神经网络可视化系统ActiVis,打开神经网络的“黑盒子” 下一篇:深度学习概述:从感知机到深度网络
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

刷脸取件被小学生“破解”!丰巢紧急下线 精选

近日,#小学生发现刷脸取件bug#的话题引发关注!这是真的吗?都市快报《好奇实验室》进行了验证。

好奇实验室 ·  3天前
4 分钟!OpenAI 的机器手学会单手解魔方了,完全自学无需编程 精选

OpenAI 的机器手学会单手解魔方了,而且还原一个三阶魔方全程只花了 4 分钟,其灵巧程度让人自叹不如。

佚名 ·  4天前
MIT新研究表明机器学习不能标记假新闻

麻省理工学院研究人员发表的两篇新论文显示,当前的机器学习模型还不能完成区分虚假新闻报道的任务。在不同的研究人员表明计算机可以令人信服地生成虚构新闻故事而无需太多人为监督之后,一些专家希望可以训练基于相同机器学习的系统来检测此类新闻。

佚名 ·  4天前
高位截瘫患者重新行走:靠意念指挥外骨骼,法国脑机接口新突破 精选

依靠介入头部的 2 个传感器,法国里昂的一名瘫痪男子 Thibault 实现了操控外骨骼装备来助力行走。

孙滔 ·  2019-10-15 10:10:00
2008 年预测 2020 年生活方式:基本都实现了

美国皮尤研究中心曾在 2008 年预测 2020 年的生活方式,目前来看,该研究的预测基本已经实现。而对于未来 10 年,也就是 2030 年左右人们的生活,在 2017 年底的世界经济论坛上,800 多名信息和通讯技术领域的技术高管和专家给出了如下预测。

佚名 ·  2019-10-15 10:03:43
机器学习的正则化是什么意思?

正则化的好处是当特征很多时,每一个特征都会对预测y贡献一份合适的力量;所以说,使用正则化的目的就是为了防止过拟合。

佚名 ·  2019-10-15 10:01:43
机器学习的正则化是什么意思?

正则化的好处是当特征很多时,每一个特征都会对预测y贡献一份合适的力量;所以说,使用正则化的目的就是为了防止过拟合。

佚名 ·  2019-10-15 10:01:43
为什么我的CV模型不好用?没想到原因竟如此简单……

机器学习专家 Adam Geitgey 近日发布了一篇文章探讨了这一简单却又让很多人头痛的问题,并分享了他为解决这一问题编写的自动图像旋转程序。

机器之心 ·  2019-10-15 09:46:46
Copyright©2005-2019 51CTO.COM 版权所有 未经许可 请勿转载