吴思楠机器学习之路:Numpy里多维数组的创建

作者: 吴思楠 2017-04-14 15:28:27

Numpy是Python科学计算的核心库之一,主要提供了对多维数组的强有力支持。

什么是多维数组?

核心对象是同型的多维数组(简单理解就是一个表格,通常内容都是些数字),具有相同的数据类型。

概念:

1. axes(轴):数组的维度统称为轴。

2. rank:轴的数量称为rank。

举例:一维数组[1,2,1],就是一个rank为1的数组,因为它只有一个轴(一维)。下图显示的是一个rank为2(二维)的数组。它的***个轴(维)的长度是2,如红色线框所示;第二个轴(维)的长度是3,如蓝色线框所示。这个有点像数据结构里说的:数组的元素本身也可以是数组类型一样,***扩展下去。

Numpy里的多维数组:ndarray

Numpy的数组类numpy.array一般称呼为ndarray,这么叫主要是为了和Python的数组类array.array区分开来。后面的文章里,如无特殊说明的地方,array和ndarray均是指的numpy.array。

ndarray(numpy.array)的主要属性:

  • ndim:数组的轴数(维度)
  • shape:python的元组类型,其中每个数字分别表示的是各个轴(维)上数组的长度
  • size:多维数组里全部元素的总数(等于shape元组里所有数值的乘积)
  • dtype:多维数组里元素的类型。同一个多维数组里所有的元素都是同一种类型

这里插播一下:

Anaconda是一个基于Python的Data Science Platform,相当于一个包装了数据分析常用库和工具的软件。它是我们开始学习的一个好帮手。下载地址:https://www.continuum.io/anaconda-overview

安装好后,打开“IPython”,或者“Jupyter QtConsole”,或者“Spyder”都可以。它们本质上都是对IPython这个交互式环境的包装。

练习:创建一个ndarray。

直接使用numpy.array()方法,参数为python的 list or tuple (sequence type)。下面的代码里,“In”是我们输入的代码,“Out”是上一行代码的输出。不是每一行代码都会有输出哦。

代码:

下面这张图是在“Spyder”里执行上面代码的效果图:

双击上图中的变量查看窗口(Variable explorer)里的ndarray,可以看到一个二维数组的展示图:

创建ndarray的一些其它方法

1. zeros,ones和empty方法

  • numpy.zeros
  • numpy.ones
  • numpy.empty

numpy提供了另外一种快速创建ndarray的方法,尤其适合数组内容未知的情况,同时也避免了数组增长过程中的开销

2. arange方法

arange可以返回一个平均分布的ndarray(numpy.array)。可以分别设置开始(可选),结束(必填)和间距(可选)。下面的示例非常清楚的展示了该方法的使用。

3. reshape方法

顾名思义,此方法是将一个已经存在了的ndarray,转换为另外一个shape(形状,即数组各个轴上的长度)的多维数组。新数组包含了原来所有的数据。

注意:新的形状必需保持size相同,直白一点,就是***个shape的参数,3x4=12,需要和第二个shape的参数2x6=12,始终保持一致。

4. random方法

用随机数填充新数组的内容。numpy里有多个产生数据数组的方法,容易搞晕。产生随机数目前我见到两大类,一类是按照“均匀分布”(例如概率论里的“0-1连续分布”)产生,另一类是按照“正态分布”产生的。

在numpy里,我们会见到random,ranf,sample这几个方法,其实它们全部都是:

numpy.random.random_sample这个方法的别名,都是基于“均匀分布”产生随机数。下面的代码验证了这一点:

详细介绍下用的最多一个:

numpy.random.random

API:https://t.im/1b9sw

它随机返回半开区间[0.0, 1.0)的浮点数,方法参数只有一个:

size : int或者int型元组,同时也作为返回数组的shape。如果输入的是(2,3,5),则首先抽取2x3x5=30个随机数,然后形成一个形状为(2,3,5)的多维数组作为返回值。如果没有提供参数,则直接返回一个随机数。

练习:生成[12, 30)区间的一个6x3的数组

代码:

好了,关于numpy第1讲就到这里,还有很多内容待后面用到的时候又再介绍。

【本文为51CTO专栏作者“吴思楠”的原创稿件,转载请通过51CTO联系作者获取授权】

戳这里,看该作者更多好文

1-Numpy 基础 多维数组
上一篇:深度学习概述:从感知机到深度网络 下一篇:Spark for python developers —Spark与数据的机器学习
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

超过Google,微信AI在NLP领域又获一项世界第一

微信AI,NLP领域又获一项世界第一,这次是在机器阅读理解方面。

乾明 ·  11h前
AI如何改善采矿行业现状?

人工智能的引入,有望将采矿业转化成一个更安全、利润空间更大且更为环保的行业。

佚名 ·  12h前
大小仅1MB!超轻量级的人脸识别模型火爆Github

近日,用户Linzaer在Github上开源了一款适用于边缘计算设备、移动端设备以及 PC 的超轻量级通用人脸检测模型,该模型文件大小仅1MB,一经开源就霸榜Github Trending榜单。

佚名 ·  12h前
你知道选工业机器人9大参数?

智能制造是全球工业制造企业所追求的目标,在向智能化转型中,涉及到设备、生产、业务、企业管理等方方面面,引用到很多先进设备和技术,如工业机器人,那么在选择工业机器人时,需要关注哪些参数?

佚名 ·  18h前
大数据和人工智能如何协同工作

人工智能和机器学习如何帮助组织从大数据中获得更好的业务见解?需要了解人工智能和大数据分析的下一步发展。大数据技术并不像几年前那样广受关注,但这并不意味着大数据技术没有得到发展。如果说有什么不同的话,那就是大数据的规模正在变得越来越大。

Kevin Casey ·  1天前
麻省理工学院开发出组装机器人:未来可建造太空殖民地

麻省理工学院博士生本杰明·杰内特(Benjamin Jenett)和原子中心的尼尔·格申费尔德教授(Neil Gershenfeld)在《电气电子工程师学会机器人与自动化快报》科学期刊上发表报告称,开发出一种组装机器人原型,它可以用很小的零件制成大型结构。

技术力量 ·  1天前
刷脸取件被小学生“破解”!丰巢紧急下线 精选

近日,#小学生发现刷脸取件bug#的话题引发关注!这是真的吗?都市快报《好奇实验室》进行了验证。

好奇实验室 ·  1天前
深度学习/计算机视觉常见的8个错误总结及避坑指南

人类并不是完美的,我们经常在编写软件的时候犯错误。有时这些错误很容易找到:你的代码根本不工作,你的应用程序会崩溃。但有些 bug 是隐藏的,很难发现,这使它们更加危险。

skura ·  1天前
Copyright©2005-2019 51CTO.COM 版权所有 未经许可 请勿转载