AI 黑箱难题怎么破?神经网络模型算法给你答案

作者: 佚名 2017-03-22 12:13:36

现在对于AI 完成某项任务已不是什么新鲜事,毕竟在工业、医疗、农业等诸多方面都大放异彩。最近,机器人的大脑又不断被开发,不但开始拥有好奇心来驱动自学,而且还像人们解释为什么作出了某些决策?机器人发展将迎来质的飞跃。

“我们需要质疑为什么算法程序会做出这样那样的决定,如果我们不在 AI 动机解释上花功夫,就无法信任这个智能系统。”卡内基梅隆大学计算机科学教授 Manuela Veloso表示说。

据了解, 创业公司 OptimizingMind 发明了一项能观察智能机器决策过程的技术。 这个算法的目的是创造“透明访问”系统,以呈现机器学习是如何做出预期的。OptimizingMind的负责人 Tsvi Achler 说:“该系统以人脑的神经模型为基础,能把任何深度网络转化为该系统的模式。它的目的是探索 AI 行为的潜在预期,并且找出 AI 思维模式的哪个方面对决策影响***”。

“我感兴趣的是,大脑和计算机的共同点在哪里?为什么人脑可以在学会任何模型之后把它解释出来。如果我说 ‘章鱼’,你是否能告诉我那是什么?如果我问章鱼触手长什么样,你能告诉我吗?”

当然AI与人类大脑的主要区别之一在于:我们会条件反射地自主去学习,而AI则要有一系列的程序输入,而且牵一发动全身。这种灵活性与自主性对于AI来说还有很大的潜力可以突破。

此外,这个系统的“透明访问“也十分炫酷。这个系统提供了一种实时观察 AI 决策的方法,抓取重点信息上节省大量的时间。它可以程师们大幅减少机器开发的时间,帮企业节省资源。Achler 还表示,在提供透明度之外,这个算法还可以被修改。不但预期(expectations)能被表达出来,每个单独预期还能随着新信息立刻改变。

今天,大多数机器学习的方法使用一个正反馈技术。风险投资公司 Naiss.io 的联合创始人 Ed Fernandez 说,正反馈使用优化过的权重执行任务。在正反馈系统里,独特性信息依据训练中出现的频率被录入权重。这意味着整套训练中的权重必须经过优化。这又意味着可以“根据正在被识别的模式执行优化”,这不是为了权重而优化,而是为了模式识别去优化。

如今,在机器人与商业捆绑日益紧密之时,更加智能细分的机器人已成时下必需,如果能在机器人行动动机上有所突破,那么,未来我们看到的将不再是答非所问跑题王,也不是独臂行天下的低能机器人,而是心灵手巧,知错能改的机器人。

AI 神经网络 模型算法
上一篇:深度神经网络中深度究竟带来了什么? 下一篇:AI从业者的思考:深度学习很厉害,但别捧杀它
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

你在打王者农药,有人却用iPhone来训练神经网络

在 iOS 设备上也可以直接训练 LeNet 卷积神经网络,而且性能一点也不差,iPhone 和 iPad 也能化为实实在在的生产力。

佚名 ·  23h前
面对疫情下的人类行为,AI迷惑!数据变化引起的工作“异常”需人为调控

从疫情中,也可以看出,我们的生活与AI交织得多么紧密,但也暴露出了一种微妙的依赖关系,我们的行为改变会改变AI的工作方式,而AI的工作方式的改变,反过来会再次影响到我们的行为。

大数据文摘 ·  1天前
从演电影到开车,细数人工智能的五大落地方向

越来越多的企业希望通过利用人工智能的功能来提高其ROI。这篇文章就将带你了解如今人工智能的五大落地方向。

读芯术 ·  1天前
下一站AI:实时服务

随着实时解决方案的增长与人工智能技术的发展,工作负载的日益提升以及非结构化数据的爆炸式增长,数据中心的发展方向正朝着加速计算、存储与网络适应性前进。

佚名 ·  2天前
教你轻松选择合适的机器学习算法!

机器学习方面没有免费午餐。因此,确定使用哪种算法取决于许多因素:面临的问题类型和预期的输出类型等。本文介绍了为数据集探究合适的机器学习方法时要考虑的几个因素。

布加迪 ·  2天前
画图太丑拿不出手?有人做了套机器学习专用画图模板,还有暗黑模式

论文、博客写好了,里面的图可怎么画?对于很多研究人员和开发者来说,内容的「可视化」是一个大问题。如果从头开始画,配色、空间布局都很伤脑筋,而且画丑了也拿不出手,要是有模板可以套就好了。

张倩、魔王 ·  3天前
领创智信首推数据标注业务,打造AI商业化闭环

亚洲大数据和人工智能公司领创智信首次推出经典保留业务--数据标注与采集。该业务由人工智能(AI)团队根据国内人工智能公司出海的数据需求,利用行业领先的技术精心打造数据标注与采集一体化服务,其中包括图片、语音、对话、文本和视频数据的标注及采集。

佚名 ·  3天前
人工智能将“吞噬”数据

显然,更多数据将成为人工智能辅助解决方案的标志。对数据的渴求可能来自于更具挑战性的问题、对高级人工智能/分析的更好利用或者是端到端价值链的增长。

佚名 ·  3天前
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载