Torch7 开源 PyTorch:Python 优先深度学习框架

作者: 佚名 2017-03-01 09:05:27

PyTorch 是一个 Python 软件包,其提供了两种高层面的功能:

使用强大的 GPU 加速的 Tensor 计算(类似 numpy)

构建于基于 tape 的 autograd 系统的深度神经网络

如有需要,你也可以复用你最喜欢的 Python 软件包(如 numpy、scipy 和 Cython)来扩展 PyTorch。目前这个版本是早期的 Beta 版,我们很快就会加入更多的功能。

PyTorch 介绍

在粒度层面(granular level)上,PyTorch 库包含了以下组件:

使用 PyTorch 的原因通常有二:

作为 numpy 的替代,以便使用强大的 GPU;

将其作为一个能提供***的灵活性和速度的深度学习研究平台。

进一步阐述如下:

一个支持 GPU 的 Tensor 库

如果你使用 numpy,那么你就使用过 Tensor(即 ndarray)。

PyTorch 提供了支持 CPU 和 GPU 的 Tensor,可以极大地加速计算。

我们提供了各种各样的用于加速的张量例程(tensor routine),可以满足你的各种科学计算需求,比如 slicing、索引、数学运算、线性代数、reduction。而且它们非常快!

动态神经网络:基于 tape 的 autograd

PyTorch 有一种独特的神经网络构建方法:使用和重放 tape recorder。TensorFlow、Theano、Caffe 和 CNTK 等大部分框架对世界的视角都是静态的,让人们必须先构建一个神经网络,然后一次又一次地使用同样的结构;如果要想改变该网络的行为,就必须完全从头开始。

但使用 PyTorch,通过一种我们称之为「Reverse-mode auto-differentiation(反向模式自动微分)」的技术,你可以零延迟或零成本地任意改变你的网络的行为。我们灵感来自关于这一主题的许多研究论文以及当前和过去的研究成果,比如 autograd、autograd、Chainer 等。

autograd:https://github.com/twitter/torch-autograd

autograd:https://github.com/HIPS/autograd

Chainer:https://chainer.org/

尽管这项技术并非 PyTorch 独有,但它仍然是到目前为止最快的实现。你能为你的疯狂研究获得***的速度和***的灵活性。

Python 优先

PyTorch 不是简单地在整体 C++框架上绑定 Python。它深入构建在 Python 之上。你可以像使用 numpy / scipy / scikit-learn 那样轻松地使用 PyTorch。你可以用你喜欢的库和包(如 Cython 和 Numba)在 Python 中编写新的神经网络层。我们的目标是尽量让你不用重新发明轮子。

命令式体验

PyTorch 的设计思路是线性、直观且易于使用。当你需要执行一行代码时,它会忠实执行。PyTorch 没有异步的世界观。当你打开调试器,或接收到错误代码和 stack trace 时,你会发现理解这些信息是非常轻松的。Stack-trace 点将会直接指向代码定义的确切位置。我们不希望你在 debug 时会因为错误的指向或异步和不透明的引擎而浪费时间。

快速精益

PyTorch 具有轻巧的框架。我们集成了各种加速库,如 Intel MKL、英伟达的 CuDNN 和 NCCL 来优化速度。在其核心,它的 CPU 和 GPU Tensor 与神经网络后端(TH、THC、THNN、THCUNN)被编写成了独立的库,带有 C99 API。

这种配置是成熟的,我们已经使用了多年。

因此,PyTorch 非常高效——无论你需要运行何种尺寸的神经网络。

在 PyTorch 中,内存的使用效率相比 Torch 或其它方式都更加高效。我们为 GPU 编写了自定义内存分配器,以保证深度学习模型在运行时有***的内存效率,这意味着在相同硬件的情况下,你可以训练比以前更为复杂的深度学习模型。

轻松拓展

编写新的神经网络模块,或与 PyTorch 的 Tensor API 相接的设计都是很直接的,不太抽象。

你可以使用 Torch API 或你喜欢的基于 numpy 的库(比如 Scipy)来通过 Python 写新的神经网络层。

如果你想用 C++ 写网络层,我们提供了基于 cffi(https://cffi.readthedocs.io/en/latest/)的扩展 API,其非常有效且有较少的样板文件。

不需要写任何 wrapper code。这里有一个示例:https://github.com/pytorch/extension-ffi

安装

二进制

Anaconda

conda install pytorch torchvision -c soumith

来自源

Anaconda 环境的说明

如果你想要用 CUDA 支持编译、安装:

NVIDIA CUDA 7.5 或之上的版本

NVIDIA CuDNN v5.x

安装可选依赖包

  1. export CMAKE_PREFIX_PATH=[anaconda root directory]  
  2. conda install numpy mkl setuptools cmake gcc cffi 
  3. conda install -c soumith magma-cuda75 # or magma-cuda80 if CUDA 8.0 

安装 PyTorch

  1. export MACOSX_DEPLOYMENT_TARGET=10.9 # if OSX  
  2. pip install -r requirements.txt 
  3. python setup.py install 

开始使用

从以下三点开始学习使用 PyTorch:

教程:开始了解并使用 PyTorch 的教程(https://github.com/pytorch/tutorials)。

案例:跨所有领域的轻松理解 PyTorch 代码(https://github.com/pytorch/examples)。

API 参考:https://pytorch.org/docs/

交流

论坛:讨论实现、研究等(https://discuss.pytorch.org)

GitHub 问题反馈:bug 通知、特征要求、安装问题、RFC、想法等。

Slack:通常聊天、在线讨论、合作等(https://pytorch.slack.com/)。

邮件订阅没有骚扰信件、单向邮件推送 PyTorch 的重要通知。订阅:https://eepurl.com/cbG0rv。

发布和贡献

PyTorch 的发布周期(主版本)为 90 天。目前的版本是 v0.1.6 Beta,我们期望在发布前尽量减少 bug。如果你发现了错误,欢迎向我们提交:

https://github.com/pytorch/pytorch/issues

如果你愿意为 PyTorch 提供新功能、实用函数或核心扩展,请先开一个 issue 与大家讨论一下。请注意:在未经讨论的情况下提交的 PR 可能会导致退回,因为我们可能会采取不同的解决方式。

在下一个版本中,我们计划推出三大新功能:

分布式 PyTorch

(这里已经有一个尝试性的实现了:https://github.com/apaszke/pytorch-dist)

反反向(Backward of Backward):在反向传播的过程中进行过程优化。一些过去和最近的研究如 Double Backprop 和 Unrolled GANs 会需要这种特性。

用于 autograd 的 Lazy Execution Engine:这将允许我们可以通过引入缓存和 JIT 编译器来优化 autograd 代码。

开发团队

PyTorch 是一个社区驱动的项目,由经验丰富的工程师和研究者开发。

目前,PyTorch 由 Adam Paszke、Sam Gross 与 Soumith Chintala 牵头开发。其他主要贡献者包括 Sergey Zagoruyko、Adam Lerer、Francisco Massa、Andreas Kopf、James Bradbury、Zeming Lin、田渊栋,Guillaume Lample、Marat Dukhan、Natalia Gimelshein 等人。

PyTorch Python 框架
上一篇:从PyTorch到Mxnet ,对比7大Python深度学习框架 下一篇:反面观点:我们不该急于投身AI的五个理由
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

GitHub近10万星:印度小哥用Python和Java实现所有AI算法

今天两个算法实现的项目又登上了GitHub热榜,每逢招聘季必上榜?此前,这两个项目曾多次登顶,分别用Python和Java实现了面试中常考的算法,AI行业就业形势日趋严峻,而算法岗更是竞争激烈,是时候复习一下基本功了!

佚名 ·  2020-05-19 14:27:10
PyTorch官方教程大更新:增加标签索引,更加新手友好

PyTorch官方教程,现已大幅更新,不必再面对一整页教学文章茫然无措,可以想学哪里就精准点哪里了。

鱼羊 ·  2020-05-18 09:44:08
只知道TF和PyTorch还不够,快来看看怎么从PyTorch转向自动微分神器JAX

说到当前的深度学习框架,我们往往绕不开 TensorFlow 和 PyTorch。本文是一个教程贴,教你理解 Jax 的底层逻辑,让你更轻松地从 PyTorch 等进行迁移。

机器之心 ·  2020-05-15 08:18:51
再也不怕别人动电脑了!用Python实时监控

最近突然有个奇妙的想法,就是当我对着电脑屏幕的时候,电脑会先识别屏幕上的人脸是否是本人,如果识别是本人的话需要回答电脑说的暗语,答对了才会解锁并且有三次机会。

佚名 ·  2020-05-07 09:05:22
隐私保护新突破:高斯差分隐私框架与深度学习结合

差分隐私被证明是个强有效的工具,并被谷歌、苹果、微软、阿里巴巴等各大机构使用。而四位发明者于 2017 年获得了被誉为理论计算机科学界诺贝尔奖的 Godel 奖。

佚名 ·  2020-04-30 13:45:56
PyTorch重大更新再战TensorFlow,AWS也来趟深度学习框架的浑水?

刚刚,Facebook联合AWS 宣布了PyTorch的两个重大更新:TorchServe和TorchElastic。而不久前Google刚公布DynamicEmbedding。两大阵营又开战端,Facebook亚马逊各取所长联手对抗Google!

鹏飞,白峰 ·  2020-04-22 14:00:50
2020年及以后的软件开发趋势

新的十年即将到来,随之而来的是对技术变革和趋势的兴奋之潮。 软件开发已成为世界几乎每个部门不可或缺的一部分,因此软件开发的发展和变化对我们的生活产生了巨大影响。 尽管我们无法始终准确地预测技术的发展前景,但我们仍有望在新的十年中延续一些趋势。

闻数起舞 ·  2020-04-17 18:00:01
AGV机器人导航新技术!室内导航的机器人新框架来了!

加州大学伯克利分校的研究人员最近开发了一种新的框架,该框架可以增强办公室,房屋或博物馆等室内环境中人类的机器人导航能力。他们的模型在arXiv上预先发表的一篇论文中提出,并在称为HumANav的真实感图像数据集上进行了训练。

佚名 ·  2020-04-09 09:56:55
Copyright©2005-2020 51CTO.COM 版权所有 未经许可 请勿转载