网友纷纷调侃人脸识别技术 到底难在哪里?

作者: 站长之家 2016-03-17 20:17:02

今日早间,马云在其微博发声:“刚刚结束德国Cebit大会开幕式。分享了一些思考和看法,未来互联网只有和传统行业进行完美结合才有持久健康的出路,而结合的结果将会形成真正意义上的数字(或数据)经济。未来三十年,因为数据经济,人类社会将会真正进入巨大的变革时代。当然还发布了支付宝的人脸识别支付技术。”消息一出,网友们对数据经济反应平平,却对“人脸识别技术”表现出了极大的兴趣,而且大部分网友纷纷调侃人脸识别技术,“整容了怎么办?”“双胞胎怎么办?”“卸妆了怎么办。。。质疑人脸识别技术的准确性。

1414718581175

人脸识别技术

那么我们不禁要问:人脸识别的技术瓶颈在哪里,为何会引发网友们的不信任?据悉,人脸识别特指利用分析比较人脸视觉特征信息进行身份鉴别的计算机技术。同时也被认为是生物特征识别领域甚至人工智能领域最困难的研究课题之一。究其难点主要体现在人脸作为生物特征的这个点上。

难点一:人脸本身太相似 不易区分

就人的脸部特征而言,不同个体之间的区别并不是很明显,因为每个人的脸部结构都是相似的,这对于利用人脸区分人类个体是不利的;另外,还有一些特殊情况我们不得不考虑,比如面对双胞胎甚至多胞胎的人们,要怎么识别。这些都是人脸识别技术要真正应用到生活中的拦路虎。

难点二:表情、光照条件、整容等外因影响识别

人脸的外形很不稳定,人们可以通过脸部肌肉的变化产生很多不同的表情,而在不同的角度进行观察,人脸的视觉图像也相差很大,这对于利用人脸识别效果的稳定性和准确性也带来了一定的挑战;另外,人脸识别还受光照条件,比如白天和黑夜,室内和室外等,人脸的很多遮盖物,比如口罩、墨镜、头发、胡须等、当然还有年龄以及人为干预的整容行为等多方面因素的影响。如何规避这些外因对于人脸识别速度以及人脸识别效果的影响,一直是科研的重点方向。

目前在国内,除了这次给支付宝提供人脸识别技术支持的face++外,还有欧比特、汉王科技、川大智胜、科大讯飞、赛为智能等均涉足人脸识别技术领域,虽然人脸识别技术现阶段还存在诸多不足,但是我们对未来人脸识别技术的发展空间还是持有乐观态度。

人脸识别技术
上一篇:人脸识别教父李子青:技术创新赋能行业未来 下一篇:如何使用深度学习AI检测并预防恶意软件及APT
评论
取消
暂无评论,快去成为第一个评论的人吧

更多资讯推荐

自拍测运势?这都是人脸识别技术的功劳

人脸测运势看似只是一种娱乐,但是背后这些技术积淀的的确确正在不断改变着我们的生活。不过,人脸识别仍是在模式识别和计算机视觉等领域最困难的问题之一,下一步仍需各方的不懈努力,未来一定会出现更多、更好的人脸识别产品。

界面 ·  2017-03-17 20:07:57
超过Google,微信AI在NLP领域又获一项世界第一

微信AI,NLP领域又获一项世界第一,这次是在机器阅读理解方面。

乾明 ·  1天前
AI如何改善采矿行业现状?

人工智能的引入,有望将采矿业转化成一个更安全、利润空间更大且更为环保的行业。

佚名 ·  1天前
大小仅1MB!超轻量级的人脸识别模型火爆Github

近日,用户Linzaer在Github上开源了一款适用于边缘计算设备、移动端设备以及 PC 的超轻量级通用人脸检测模型,该模型文件大小仅1MB,一经开源就霸榜Github Trending榜单。

佚名 ·  1天前
你知道选工业机器人9大参数?

智能制造是全球工业制造企业所追求的目标,在向智能化转型中,涉及到设备、生产、业务、企业管理等方方面面,引用到很多先进设备和技术,如工业机器人,那么在选择工业机器人时,需要关注哪些参数?

佚名 ·  1天前
大数据和人工智能如何协同工作

人工智能和机器学习如何帮助组织从大数据中获得更好的业务见解?需要了解人工智能和大数据分析的下一步发展。大数据技术并不像几年前那样广受关注,但这并不意味着大数据技术没有得到发展。如果说有什么不同的话,那就是大数据的规模正在变得越来越大。

Kevin Casey ·  2天前
麻省理工学院开发出组装机器人:未来可建造太空殖民地

麻省理工学院博士生本杰明·杰内特(Benjamin Jenett)和原子中心的尼尔·格申费尔德教授(Neil Gershenfeld)在《电气电子工程师学会机器人与自动化快报》科学期刊上发表报告称,开发出一种组装机器人原型,它可以用很小的零件制成大型结构。

技术力量 ·  2天前
刷脸取件被小学生“破解”!丰巢紧急下线 精选

近日,#小学生发现刷脸取件bug#的话题引发关注!这是真的吗?都市快报《好奇实验室》进行了验证。

好奇实验室 ·  2天前
Copyright©2005-2019 51CTO.COM 版权所有 未经许可 请勿转载